Physics, asked by saryka, 3 months ago

➟ Kindly don't spam
➟ Answer with explaination​

Attachments:

Answers

Answered by mathdude500
110

\large\underline{\sf{Solution-}}

Let us suppose that

  • m be the mass of the particle.

  • v be the speed of the particle.

  • r be the radius of the circular path.

We know,

☆ Centrifugal force is given by

\rm :\longmapsto\:F_c = \dfrac{m {v}^{2} }{r}  -  -  - (1)

☆ Let N be the normal force acting on the particle and angle θ made by the conical surface with the horizontal.

So,

☆ Horizontal component of normal force is given by

\rm :\longmapsto\:N_x = N \: sin \theta -  -  - (2)

and

☆ Vertical component of normal force is given by

\rm :\longmapsto\:N_y = N \: cos \theta -  -  - (3)

Now,

According to statement,

\rm :\longmapsto\:F_c = N_x

\rm :\longmapsto\:\dfrac{m {v}^{2} }{r}  = N \: sin\theta -  - (4)

Also,

According to statement,

\rm :\longmapsto\:N_y \:  =  \: W

\rm :\longmapsto\:N \: cos\theta \:  = mg -  -  - (5)

where,

  • m = mass of the particle

  • g = acceleration due to gravity

☆ On dividing equation (4) by equation (5), we get

\rm :\longmapsto\:\dfrac{N \: sin\theta}{N \: cos\theta}  = \dfrac{\dfrac{m {v}^{2} }{r} }{ \:  \:  \: mg \:  \:  \: }

\bf :\longmapsto\:tan\theta \:  =  \: \dfrac{ {v}^{2} }{rg} -  -  -  (6)

Now,

☆ From the figure,

\rm :\longmapsto\:tan(90 \degree \:  - \theta) = \dfrac{r}{h}

\rm :\longmapsto\:cot\theta = \dfrac{r}{h}

\bf :\longmapsto\:tan\theta = \dfrac{h}{r}  -  -  - (7)

So,

☆ On comparing equation (6) and equation (7), we get

\rm :\longmapsto\:\dfrac{ {v}^{2} }{rg}  = \dfrac{h}{r}

\rm :\longmapsto\: {v}^{2}  = gh

\bf\implies \:v =  \sqrt{gh}

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \: Option \: (3) \: is \: correct}

Attachments:
Answered by XxitsmrseenuxX
0

Answer:

\large\underline{\sf{Solution-}}

Let us suppose that

m be the mass of the particle.

v be the speed of the particle.

r be the radius of the circular path.

We know,

☆ Centrifugal force is given by

\rm :\longmapsto\:F_c = \dfrac{m {v}^{2} }{r}  -  -  - (1)

☆ Let N be the normal force acting on the particle and angle θ made by the conical surface with the horizontal.

So,

☆ Horizontal component of normal force is given by

\rm :\longmapsto\:N_x = N \: sin \theta -  -  - (2)

and

☆ Vertical component of normal force is given by

\rm :\longmapsto\:N_y = N \: cos \theta -  -  - (3)

Now,

According to statement,

\rm :\longmapsto\:F_c = N_x

\rm :\longmapsto\:\dfrac{m {v}^{2} }{r}  = N \: sin\theta -  - (4)

Also,

According to statement,

\rm :\longmapsto\:N_y \:  =  \: W

\rm :\longmapsto\:N \: cos\theta \:  = mg -  -  - (5)

where,

m = mass of the particle

g = acceleration due to gravity

☆ On dividing equation (4) by equation (5), we get

\rm :\longmapsto\:\dfrac{N \: sin\theta}{N \: cos\theta}  = \dfrac{\dfrac{m {v}^{2} }{r} }{ \:  \:  \: mg \:  \:  \: }

\bf :\longmapsto\:tan\theta \:  =  \: \dfrac{ {v}^{2} }{rg} -  -  -  (6)

Now,

☆ From the figure,

\rm :\longmapsto\:tan(90 \degree \:  - \theta) = \dfrac{r}{h}

\rm :\longmapsto\:cot\theta = \dfrac{r}{h}

\bf :\longmapsto\:tan\theta = \dfrac{h}{r}  -  -  - (7)

So,

☆ On comparing equation (6) and equation (7), we get

\rm :\longmapsto\:\dfrac{ {v}^{2} }{rg}  = \dfrac{h}{r}

\rm :\longmapsto\: {v}^{2}  = gh

\bf\implies \:v =  \sqrt{gh}

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \: Option \: (3) \: is \: correct}

Similar questions