Math, asked by MissPerfect09, 5 months ago

⚠️Kindly Don't spamm⚠️
– Non-copied Answer
– Well-explained Answer

Attachments:

Answers

Answered by BrainlyPopularman
30

(a)

GIVEN :

 \\ \tt \implies x {y}^{2} k =  {(4xy + 3y)}^{2} - {(4xy  - 3y)}^{2} \\

TO FIND :

• Value of 'k' = ?

SOLUTION :

 \\ \tt \implies x {y}^{2} k =  {(4xy + 3y)}^{2} - {(4xy  - 3y)}^{2} \\

• Using identity –

 \\ \tt \implies {(a)}^{2} - {(b)}^{2}  = (a + b)(a - b)\\

• So that –

 \\ \tt \implies x {y}^{2} k =  {(4xy + 3y + 4xy - 3y)} {(4xy + 3y -  \{4xy  - 3y \})} \\

 \\ \tt \implies x {y}^{2} k =  {(4xy + 4xy )} {(4xy + 3y - 4xy + 3y)} \\

 \\ \tt \implies x {y}^{2} k =  {(8xy)} {(3y + 3y)} \\

 \\ \tt \implies x {y}^{2} k =  {(8xy)} {(6y)} \\

 \\ \tt \implies x {y}^{2} k =48x {y}^{2}\\

 \\ \tt \implies k = \dfrac{48x {y}^{2}}{x {y}^{2}}\\

 \\ \large \implies{ \boxed{ \tt k = 48}}\\

▪︎ Hence , The value of k is 48.

 \\\rule{220}{2} \\

(b)

GIVEN :

 \\ \tt \implies  {a}^{2} +  {b}^{2} = 9 \:  \: and \:  \: ab = 4\\

TO FIND :

 \\ \tt \implies Value \:  \: of \:  \: 3 {(a + b)}^{2} - 2(a - b)^{2} =?\\

SOLUTION :

• Let –

 \\ \tt \implies P =  3 {(a + b)}^{2} - 2(a - b)^{2}\\

• Using identity –

 \\ \tt \implies (a \pm b)^{2} = {a}^{2} +  {b}^{2} \pm2ab\\

• So that –

 \\ \tt \implies P =  3[{a}^{2} +  {b}^{2} + 2ab]- 2[{a}^{2} + {b}^{2} - 2ab]\\

• Put the values –

 \\ \tt \implies P =  3[9+2(4)]- 2[9 - 2(4)]\\

 \\ \tt \implies P =  3(9+8)- 2(9 -8)\\

 \\ \tt \implies P =  3(17)- 2(1)\\

 \\ \tt \implies P =51- 2\\

 \\ \large\implies{ \boxed{ \tt P =49}}\\

Answered by BrainlyHero420
147

Answer:

1) Given :-

  • xy²k = (4xy + 3y)² - (4xy - 3y)²

✯ To Find :-

  • What is the value of k.

✯ Solution :-

xy²k = (4xy + 3y)² - (4xy - 3y)²

⇒ xy²k = 16x²y² + 9y² + 24xy² - (16x²y² + 9y² - 24xy²)

⇒ xy²k = 16x²y² + 9y² + 24xy² - 16x²y² - 9y² + 24xy²

⇒ xy²k = 48xy²

k = 48

\therefore The value of k is \boxed{\bold{\large{48}}}

_______________________________

2) Given :-

  • a² + b² = 9 and ab = 4

✯ To Find :-

  • What is the value of 3(a + b)² - 2(a - b)²

Solution :-

3(a + b)² - 2(a - b)²

⇒ 3(a² + b² + 2ab) - 2(a² + b² - 2ab)

⇒ 3a² + 3b² + 6ab - 2a² - 2b² + 4ab

⇒ a² + b² + 10ab

» Putting + = 9 and ab = 4 we get,

⇒ 9 + 10(4)

⇒ 9 + 40

➥ 49

\therefore The value of 3(a + b)² - 2(a - b)² is \boxed{\bold{\small{49}}}

_______________________________

Similar questions