Math, asked by Anonymous, 3 months ago




⚠️ Kindly Don't spamm ⚠️
– Non-copied Answer
– Well-explained Answer


Attachments:

Answers

Answered by Sizzllngbabe
64

 \huge \sf{ \underline{ \underline{Question :  - }}}

Prove That:-

  \large \sf \cot^{ - 1} ( \frac{ \sqrt{1 +  \sin \: x  }  +  \sqrt{1 -  \sin x} }{ \sqrt{1 -  \sin \: x }   -  \sqrt{1 -  \sin \: x } }  =  \frac{x}{2}  ;∈(0, \frac{\pi}{4} )

 \huge \sf{ \underline{ \color{maroon}{Solution:- }}}

 \large \sf \: L.H.S = \ \cot^{ - 1} ( \frac{ \sqrt{1 +  \sin \: x  }  +  \sqrt{1 -  \sin x} }{ \sqrt{1 -  \sin \: x }   -  \sqrt{1 -  \sin \: x } }

 \sf \: ⇒ \cot ^{ - 1} ( \frac{ \sqrt{1 +  \sin \:x }  \:  +  \sqrt{1 -  \sin \: x}  }{ \sqrt{1 +  \sin  \: x }  -  \sqrt{1 -  \sin \: x } }  \times  \frac{( \sqrt{1 +  \sin \: x }  +  \sqrt{1 +  \sin \: x }) }{( \sqrt{1 +  \sin \: x } +  \sqrt{1 -  \sin \: x }  }

⇒  \cot ^{ - 1} ( \frac{1 +  \sin \: x + 1 -  \sin \: x   + 2 \sqrt{1 -  \sin \: x } }{1 +  \sin \: x - 1 +  \sin \: x  } )

⇒ \cot ^{ - 1} (   \frac{2 + 2 \cos \: x}{2 \sin \: x } )

 \boxed{  \color{maroon}{⇒ \cot^{ - 1} (  \frac{1 +  \cos \: x }{ \sin \: x } )}}

⇒  \bf\cot ^{ - 1} ( \frac{2 \cos \: x \frac{x}{2}  }{2 \sin \frac{x}{2} \cos \frac{x}{2}   } )

⇒ \cot ^{ - 1}( { \cot}{ \frac{x}{2} } )

 \boxed{ \color{goldenrod}{⇒ \frac{x}{2}  =  \bf \: R.H.S}}

 \huge \pink \dag \: { \large{ \boxed{ \red{Hence  \: proved}}}}

Answered by diyarajvanshi7
4

Answer:

Prove That:-

\large \sf \cot^{ - 1} ( \frac{ \sqrt{1 + \sin \: x } + \sqrt{1 - \sin x} }{ \sqrt{1 - \sin \: x } - \sqrt{1 - \sin \: x } } = \frac{x}{2} ;∈(0, \frac{\pi}{4} )cot

−1

(

1−sinx

1−sinx

1+sinx

+

1−sinx

=

2

x

;∈(0,

4

π

)

\huge \sf{ \underline{ \color{maroon}{Solution:- }}}

Solution:−

\large \sf \: L.H.S = \ \cot^{ - 1} ( \frac{ \sqrt{1 + \sin \: x } + \sqrt{1 - \sin x} }{ \sqrt{1 - \sin \: x } - \sqrt{1 - \sin \: x } }L.H.S= cot

−1

(

1−sinx

1−sinx

1+sinx

+

1−sinx

\sf \: ⇒ \cot ^{ - 1} ( \frac{ \sqrt{1 + \sin \:x } \: + \sqrt{1 - \sin \: x} }{ \sqrt{1 + \sin \: x } - \sqrt{1 - \sin \: x } } \times \frac{( \sqrt{1 + \sin \: x } + \sqrt{1 + \sin \: x }) }{( \sqrt{1 + \sin \: x } + \sqrt{1 - \sin \: x } }⇒cot

−1

(

1+sinx

1−sinx

1+sinx

+

1−sinx

×

(

1+sinx

+

1−sinx

(

1+sinx

+

1+sinx

)

⇒ \cot ^{ - 1} ( \frac{1 + \sin \: x + 1 - \sin \: x + 2 \sqrt{1 - \sin \: x } }{1 + \sin \: x - 1 + \sin \: x } )⇒cot

−1

(

1+sinx−1+sinx

1+sinx+1−sinx+2

1−sinx

)

⇒ \cot ^{ - 1} ( \frac{2 + 2 \cos \: x}{2 \sin \: x } )⇒cot

−1

(

2sinx

2+2cosx

)

\boxed{ \color{maroon}{⇒ \cot^{ - 1} ( \frac{1 + \cos \: x }{ \sin \: x } )}}

⇒cot

−1

(

sinx

1+cosx

)

⇒ \bf\cot ^{ - 1} ( \frac{2 \cos \: x \frac{x}{2} }{2 \sin \frac{x}{2} \cos \frac{x}{2} } )⇒cot

−1

(

2sin

2

x

cos

2

x

2cosx

2

x

)

⇒ \cot ^{ - 1}( { \cot}{ \frac{x}{2} } )⇒cot

−1

(cot

2

x

)

\boxed{ \color{goldenrod}{⇒ \frac{x}{2} = \bf \: R.H.S}}

2

x

=R.H.S

\huge \pink \dag \: { \large{ \boxed{ \red{Hence \: proved}}}}†

Henceproved

Step-by-step explanation:

hope it helps you dear ❤️

Similar questions