⇒ Kindly explain your answer
⇒ Avoid spamming
Answers
Answer:
So, the option is b and c.
Explaination:
⇒ sec²A + sec²B = sec²A . sec²B
⇒ sec²A = sec²A . sec²B - sec²B
⇒ sec²A = sec²B (sec²A - 1)
(∵ sec²x - 1 = tan²x)
⇒ sec²A = sec²B . tan²A
⇒ sec²A/tan²A = sec²B
⇒ (1/cos²A) / (sin²A/cos²A)
⇒ 1/sin²A = sec²B
⇒ sin²A = cos²B
⇒ sin²A = sin²(90 - B)
⇒ sin²A - sin²(90 - B) = 0
⇒ (sinA + sin(90 - B))(sinA - sin(90-B)) = 0
∵ A and B are below 180° and in both quadrant sin is positive, so,
⇒ sinA - sin(90 - B) = 0
⇒ sinA = sin(90 - B)
so, ⇒ A = nπ + (-1)^n(π/2 - B)
(i) put n = 0
⇒ A = π/2 - B
⇒ A + B = π/2
(ii) put n = 1
⇒ A = π - (π/2 - B)
⇒ A = π/2 + B
(iii) put n = 2
⇒ A = 2π + (π/2 - B)
⇒ A + B = 5π/2
This is not exist in triangle...
so, the angle has right angle and obtuse angle.
In triangle ABC, if
Identities Used :-
Now,
Consider,
Additional Information :-
Trigonometry Formulas
sin(−θ) = −sin θ
cos(−θ) = cos θ
tan(−θ) = −tan θ
cosec(−θ) = −cosecθ
sec(−θ) = sec θ
cot(−θ) = −cot θ
Product to Sum Formulas
sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
cos x cos y = 1/2[cos(x–y) + cos(x+y)]
sin x cos y = 1/2[sin(x+y) + sin(x−y)]
cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Sum or Difference of angles
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B
tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A
Multiple and Submultiple angles
sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
tan 2A = (2 tan A)/(1-tan²A)