Math, asked by saryka, 1 month ago

➟ Kindly explain your answer
➟ If you can't explain then don't answer this question!​

Attachments:

Answers

Answered by diajain01
228

{\boxed{\underline{\tt{\orange{Required  \: Answer:-}}}}}

 \dag \:  \:  \:   \sf{d.)  \frac{ - 131}{109}}

●GIVEN:-

  •  \sf{tan \theta \:  =  \frac{ - 5}{12} }
  •  \sf{ \theta \: is \: not \: in \: fourth \: quadrant}

●TO FIND:-

  •  \sf{ \frac{tan(90 \degree \:  +  \theta) - sin(180 \degree -  \theta)}{sin(270 \degree -  \theta) + cosec(360 \degree -  \theta} =  }

●FORMULA USED:-

  • Pythagoras theorem
  •  \sf{AB^2 +BC^2=AC^2}

  •  \sf{tan(90 \degree +  \theta) =  - cot \theta}
  •  \sf{sin(180 \degree -  \theta) = sin \theta}

  •  \sf{sin(270 \degree -  \theta) =  - cos \theta}
  •  \sf{cosec(360 \degree -  \theta) =  - cosec\theta}

●SOLUTION:-

 \sf{tan \theta= \frac{ - 5}{12}  =  \frac{perpendicular}{base} }

According to Pythagoras theorem: -

 \sf{AB^2 +BC^2=AC^2} \\  \\   : \longrightarrow \sf{ {5}^{2}  +  {12}^{2}  = {AC}^{2}  } \\  \\ : \longrightarrow \sf{ {AC}^{2} = 25 + 144 }  \\  \\ : \longrightarrow \sf{ AC =  \sqrt{25 + 144}  } \\  \\ : \longrightarrow \sf{ AC =  \sqrt{169}} \\  \\  \rightarrow \sf \pink{AC =13}

here, we are using the formulas:-

 \sf{ \frac{tan(90 \degree \:  +  \theta) - sin(180 \degree -  \theta)}{sin(270 \degree -  \theta) + cosec(360 \degree -  \theta} =  } \\  \\  \rightarrow \sf{ \frac{ - cot \theta - sin \theta}{ - cos \theta - cosec \theta} } \\  \\ \rightarrow  \sf{ \frac{sin \theta \:  + \: cot \theta}{cosec \theta + cos \theta}  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)}

as tanis given in -ve, So it can be in II quadrant or IV quadrant.

but in question, theta is not in IV quadrant so it is in II quadrant.

In II quadrant, sin is +ve, and cos is -ve.

 :  \longrightarrow \sf{sin \theta =  \frac{5}{13} } \\  \\  :  \longrightarrow \sf{cos \theta =  \frac{ - 12}{13} } \\  \\  :  \longrightarrow \sf{cosec \theta =  \frac{13}{5} } \\  \\  :  \longrightarrow \sf{cot \theta =  \frac{ - 12}{5} }

putting these values in the (1) equation

:  \longrightarrow \sf{ \frac{ \frac{5}{13} -  \frac{12}{5}  }{  \frac{ - 13}{5}  -  \frac{12}{ 13}  } } \\  \\  \sf{lcm \: is \: 65} \\  \\ :  \longrightarrow \sf{ \frac{ \frac{5 \times 5 - 12 \times 13}{ \cancel{65}} }{ \frac{ - 13 \times 5 - 12 \times 5}{ \cancel{65}} } } \\  \\ :  \longrightarrow \sf{ \frac{25 - 156}{169 - 60} } \\  \\ :  \longrightarrow \sf \huge \blue{ \frac{ - 131}{109} }

So, The required answer is -131/109.

Attachments:
Similar questions