Math, asked by brainlywae, 5 months ago

kindly help me ....​

Attachments:

Answers

Answered by BrainlyEmpire
20

  \sf \:  {\blue{ \underline{ \underline{ANSWER }}}}

Given :-

  • \sf \: q_1 \:  =  \: 5 \times  {10}^ {- 8}
  • \sf \: q_2 =  - 3 \times  {10}^{ - 8}
  • Distance(d) = 16cm = 0.16m

To Find : -

  • Position where the electric potential is 0.

Solution :-

 \setlength{\unitlength}{1cm}\thicklines\begin{picture}(10,6)\put(1,1){\vector(-1,0){3}} \put(1,1){\vector(1,0){3}}\put(-1.5,1){\circle*{0.1}}\put(1.5,1){\circle*{0.1}}\put(3.5,1){\circle*{0.1}}\put(-1.5,2){\line(0,1){0.3}}\put(-1.5,2.15){\line(1,0){3}}\put(1.5,2){\line(0,1){0.3}}\put(-1.5,-0.5){\line(0,1){0.3}}\put(-1.5,-0.35){\line(1,0){5}}\put(3.5,-0.5){\line(0,1){0.3}}\put(-1.6,0.5){\sf A}\put(1.35,0.5){\sf B}\put(3.4,0.5){\sf C}\put(-0.2,1.7){\sf x\;cm}\put(0.2,0){\sf d = 16\;cm}\put(-1.6,1.4){$\sf q_1$}\put(3.4,1.4){$\sf q_2$}\end{picture}

● Let C be the point from 'x cm' to the right of charge q(1) where electric potential is zero. (as shown in the fig.)

According to Question:-

 \boxed{ \sf \: V =   \:  \frac{kq_1}{r_1}  +  \frac{kq_2}{r_2} }

 \implies \: \sf \: V =   \:  \frac{kq_1}{x}  +  \frac{kq_2}{(d - x)}

When, Electric Potential is zero.

 \implies \: \sf \: 0 =   \:  \frac{kq_1}{x}  +  \frac{kq_2}{(d - x)}

 \implies \: \sf   \:  \frac{kq_1}{x}   =  -  \frac{kq_2}{(d - x)}

 \implies \: \sf   \:  \frac{ \cancel{k}q_1}{x}   =  -  \frac{ \cancel{k}q_2}{(d - x)}

 \implies \: \sf   \:  \frac{q_1}{x}   =  -  \frac{q_2}{(d - x)}

On putting the values,

 \implies \: \sf   \:  \frac{5 \times  {10}^{ - 8} }{x}   =   \frac{ - ( - 3 \times  {10}^{- 8})}{0.16 \: - \:  x}

\implies \: \sf   \:  \frac{5 \times   \cancel{{10}^{- 8}}}{x}   =   \frac{ 3 \times \cancel{{10}^{- 8}}}{0.16 \: -  \: x}

On Cross Multiplication, we get:-

 \implies  \sf \: \: 3x =  \: 0.80 \:  -  \: 5x

\implies  \sf \: \: 8x =  \: 0.80

 \implies \: \sf x \:  =  0.10 \:

 \boxed{ \sf \:  \therefore \: x =0 .10 \: m \: or \: 10 \: cm}

Thus, the Electric Potential is zero at 10cm at right side of charge q(1) or (16 - 10) = 6cm at left side of charge q(2).

Answered by Anonymous
89

Answer:

Case 1 :- Let two charges 5 × 10⁻⁸C and -3 × 10⁻⁸C are placed on a line of points A answer B and C is the point where electric potential becomes zero.

e.g., A---------------C---------------B

Then, use </p><p> \: V_C</p><p> =0 \:

or, </p><p>V_{CA} +V_{CB} = 0 \:

or, </p><p>\frac{q_A}{4\pi\epsilon_0r_{CA}}+\frac{q_B}{4\pi\epsilon_0r_{CB}}=0 \:

Let CA = x then, CB = (16 - x)

so, 9 × 10⁹ × 5 × 10⁻⁸/x + 9 × 10⁹ × (-3 × 10⁻⁸)/(16 - x) = 0

⇒5/x = 3/(16 - x)

⇒5(16 - x) = 3x

⇒80 - 5x = 3x

⇒80 = 8x

x = 10

Hence, electric potential is zero at the distance of 10cm from charge of 5 × 10⁻⁸C on line joining the two charges between them.

Case 2 :- Let C is not between the two charges. Then,

A-------------B------C

V_{CA}+V_{CB}=0 \:

or, </p><p>\frac{q_A}{4\pi\epsilon_0r_{CA}}+\frac{q_B}{4\pi\epsilon_0r_{CB}}=0 \:

or, </p><p>\frac{q_A}{r_{CA}}+\frac{q_B}{r_{CB}}=0 \:

or, 5 × 10⁻⁸/(16 + x) + (-3 × 10⁻⁸)/x = 0

or, 5/(16 + x) = 3/x

or, 5x = 48 + 3x

or, 2x = 48 ⇒x = 24cm

So, electric potential is also equal to zero at distance of 24cm from charge of - 3 × 10⁻⁸C and at a distance of (24 + 16) cm from charge of 5 × 10⁻⁸C,on the side of charge of - 3 × 10⁻⁸C

hope this helps you

Similar questions