Math, asked by brainlywae, 4 months ago

kindly help me.......​

Attachments:

Answers

Answered by BrainlyEmpire
18

 \blue {\sf{ \underline{ \underline{ANSWER}}}}

Given :-

  • Mass of particle = 'm'
  • Charge of particle = '-q'
  • Electric Field = 'E'
  • Speed =  \sf V_x
  • Length of the plate = 'L'

  • As, the Charged particle is moving with Speed(Vx) on an uniform electric field.

Now, Applying Newtons 2nd Law

 \green{ \boxed {  \sf \: F = m \:  a}}

 \implies \: \sf \: a \:  =  \:  \frac{F}{m}

\implies \: \sf \: a \:  =  \:  \frac{qE}{m} \:  \:  \:  \:[F = qE] \:   \:  \: \longrightarrow \: (1)

_______________________________________

 \sf \: Now,  \: we \:  have  \:  \: \:  \boxed{ \purple{ \sf \: Speed =   \:  \frac{Distance}{time}}}

 \implies  \sf \: \: time  =  \frac{Distance}{Speed}

 \therefore \:   \sf \: t =  \frac{L}  { \:  \: V_x} \:  \:  \:  \:  \:  \:  \:  \longrightarrow \: (2)

_______________________________________

  • Now, In Vertical Direction, we have
  • Initial Velocity of the particle (u) = 0
  • Displacement(Vertically) = s
  • Time taken = t

Therefore, we have

\boxed{ \green { \sf \: s = ut +  \frac{1}{2} a {t}^{2} }}

On putting the values of 'a' and 't' from Equation (1) and (2) we get,

 \implies \sf \: s \:  =  \: (0 \times t)\:  +  \:  \frac{1}{2} \times  ( \frac{qE} {m}) \times{(\frac{L}  {\:  \: V_x})}^{2}

\implies \sf \: s \:  =  \frac{1}{2} \times  ( \frac{qE} {m}) \times{(\frac{L}  {\:  \: V_x})}^{2}

 \implies \sf \: s \:   =  \:  \frac{qE{L}^{2}}{ \: 2m{V_x}^{2} }

 \boxed { \sf \: Hence,  \: the \:  Vertical \:  De flection \:  is  \: \frac{qE{L}^{2}}{2m{V_x}^{2}}}

Answered by Anonymous
21

Answer:

Answer

Given :-

Mass of particle = 'm'

Charge of particle = '-q'

Electric Field = 'E'

Speed =  \sf V_x

Length of the plate = 'L'

As, the Charged particle is moving with Speed(Vx) on an uniform electric field.

Now, Applying Newtons 2nd Law

 \pink{ \boxed {  \sf \: F = m \:  a}}

 \implies \: \sf \: a \:  =  \:  \frac{F}{m}

\implies \: \sf \: a \:  =  \:  \frac{qE}{m} \:  \:  \:  \:[F = qE] \:   \:  \: \longrightarrow \: (1)

_______________________________________

 \sf \: Now,  \: we \:  have  \:  \: \:  \boxed{ \blue{ \sf \: Speed =   \:  \frac{Distance}{time}}}

 \implies  \sf \: \: time  =  \frac{Distance}{Speed}

 \therefore \:   \sf \: t =  \frac{L}  { \:  \: V_x} \:  \:  \:  \:  \:  \:  \:  \longrightarrow \: (2)

_______________________________________

Now, In Vertical Direction, we have

Initial Velocity of the particle (u) = 0

Displacement(Vertically) = s

Time taken = t

Therefore, we have

\boxed{ \orange { \sf \: s = ut +  \frac{1}{2} a {t}^{2} }}

On putting the values of 'a' and 't' from Equation (1) and (2) we get,

 \implies \sf \: s \:  =  \: (0 \times t)\:  +  \:  \frac{1}{2} \times  ( \frac{qE} {m}) \times{(\frac{L}  {\:  \: V_x})}^{2}

\implies \sf \: s \:  =  \frac{1}{2} \times  ( \frac{qE} {m}) \times{(\frac{L}  {\:  \: V_x})}^{2}

 \implies \sf \: s \:   =  \:  \frac{qE{L}^{2}}{ \: 2m{V_x}^{2} }

 \boxed { \sf \: Hence,  \: the \:  Vertical \:  De flection \:  is  \: \frac{qE{L}^{2}}{2m{V_x}^{2}}}

Similar questions