Math, asked by Anonymous, 1 month ago

Kindly refer to attachment!

From the given attachment which of the following option would be correct regards kinetic energy of the ball A and the ball B when they fall on the ground.

Options:

:\implies \sf K.E_A \: = 3K.E_B \\ \\ :\implies \sf K.E_A \: = K.E_B \\ \\ :\implies \sf 2K.E_A \: = K.E_B \\ \\ :\implies \sf 3K.E_{\dot{A}} \: = K.E_B



Please explain this to me fully!

And please don't spam!

I need correct answer urgently with explanation!...

_________________

And thank ya'again for your answer!! :) ​

Attachments:

Answers

Answered by NewGeneEinstein
7

Figure:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\put(0,0){\framebox(1,3){\sf 6ft}}\put(0.5,3.5){\circle{1}{\sf A}{\sf(4kg)}}\put(3,0){\framebox(1,1){\sf 2ft}}\put(3.5,1.5){\circle{1}{\sf B(12kg)}}\end{picture}

Concept:-

According to law of conservation of energy the potential energy of the ball at a defined height is equal to the kinetic energy of the ball before hitting the ground.

Solution:-

Case:-1

  • \sf m_A=4kg
  • \sf h_A=6ft

Acceleration due to gravity=g=10m/s^2

We know that

\boxed{\sf P.E=mgh}

\\ \sf\longmapsto P.E_A=4\times 10\times 6

\\ \sf\longmapsto P.E_A=40\times 6

\\ \sf\longmapsto P.E_A=240J

\\ \underline{\boxed{\bf{\therefore K.E_A=240J}}}

Case-2:-

  • \sf m_B=12kg
  • \sf h_B=2ft

g=10m/s^2

\\ \sf\longmapsto P.E_B=12\times 10\times 2

\\ \sf\longmapsto P.E_B=120\times 2

\\ \sf\longmapsto P.E_B=240J

\\ \underline{\boxed{\bf{\therefore K.E_B=240J}}}

____________________________

Comparing both:-

\\ \sf\longmapsto \dfrac{K.E_A}{K.E_B}=\cancel{\dfrac{240J}{240J}}

\\ \sf\longmapsto \dfrac{K.E_A}{K.E_B}=1

\\ \sf\longmapsto K.E_A=K.E_B

\\ \underline{\boxed{\pmb{\sf{\therefore K.E_A=K.E_B}}}}

Hope it helps!

Answered by devanshu1234321
1

THING TO KNOW BEFORE SOLVING:-

We know that:-

Energy the potential energy of the ball at a defined height is equal to the kinetic energy of the ball before hitting the ground.

EXPLANATION:-

\sf\;m_a=4\;kg\\\\h_a=6\;ft\\\\\boxed{\text{P.E=mgh}}\\g=10\;m./s^2\\\\\rightarrow K.E_a=4\times 10\times 6\\\\\rigtharrow K.E_a=240\;J

Now,

\sf\;m_b=12kg\\\\h_b=2\;ft\\\\K.E_B=12\times10\times2\\\\K.E_B=240\; J

Since the P.E of both are same

So we can say,

\boxed{\underline\bold\huge{K.E_a=K.E_b}}

So opt-B is the required answer,

CHEERS !!

Similar questions