Math, asked by Hisoundarya, 8 months ago

Kindly solve all the questions correctly step by step

Attachments:

Answers

Answered by venkateshwarlu201
1

Step-by-step explanation:

1 . evaluating:

(a) (y+3)^3

sol: (a+b)^3 = a^3+b^3 +3ab(a+b)

(y+3)^3 = y^3+3^3+3(y)(3)(y+3)

= y^3+27+9y^2+27y

= y^3+9y^2+27y+27

(b)(1001)^2

sol: (1000+1)^2

=(1000)^2 +(1)^2+2(1000)(1)

=1000000+1+2000

=1002001

(c)(a^2b^2-d^2)^2

sol:(a^2b^2-d^2)^2=(a^2b^2)^2+(d)^2-2(a^2b^2)(d^2)

=a^4b^4+d^4-2(a^2b^2d^2)

=a^4b^4+d^4-2a^2b^d^2

(d)97^2

sol: (97)^2=(100-3)^2

(100-3)^2=(100)^2+(3)^2-2(100)(3)

=10000+9-600

=9409

2.simplify 75×75+2×75×25+25×25

sol: 5625+3750+625

=10000

3.(a)(2x+3y+5z)^2

sol: (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

(2x+3y+5z)^2=(2x)^2+(3y)^2+(5z)^2+2[(2x)(3y)+(3y)(5z)+(2x)(5z)]

=4x^2+9y^2+25z^2+2(6xy+15yz+10xz)

=4x^2+9y^2+25z^2+12xy+30yz+20xz

(b)(k+2)^3

sol:(a+b)^3=a^3+b^3+3(ab)(a+b)

(k+2)^3=k^3+2^3+3(k)(2)(k+2)

=k^3+8+6k^2+12k

=k^3+6k^2+12k+8

(c)(106)^3

sol:(100+6)^3=(100)^3+(6)^3+3(100)(6)(100+6)

=10000+216+190800

=201016

(d)(996)^3

sol: (1000-4)^3=(1000)^3-(4)^3-3(1000)(4)(1000-4)

=1000000000-64-12000(996)

=988047936

4).sol:

a^3-b^3=(a-b)^3+3ab(a-b)

x-y=4

cubing on both sides

(x-y)^3 =64

x^3-y^3=(x-y)^3+3(xy)(x-y)

=64+3(21)(4)

=316

5).103^3+97^3

sol:103^3+97^3=(103+97)^3-3(103)(97)(103+97)

=(200)^3-3(9991)(200)

=8000000-5994600

=2005400

6).(4x-5y)(16x^2+20xy+25y^2)

sol:(4x-5y)[(4x)^2+(4x)(5y)+(5y)^2]

=(4x-5y)(4x+5y)^2

=(4x-5y)(4x+5y)(4x+5y)

(a-b)(a+b)=(a)^2-(b)^2

=(4x)^2-(5y)^2(4x+5y)

={(4x)^2}^2 - {(5y)^2}^2

=(4x)^4-(5y)^4

=256x^4-625y^4

I have answered your questions till 6th and I don't have time to answer others questions now I will answer later sorry

Similar questions