Math, asked by Anonymous, 7 months ago

Kindly solve it!..................​

Attachments:

Answers

Answered by mamtadpaktrivedi
6

Answer:

4

Step-by-step explanation:

First here some error in question

Last one root value is 225

So,

√[10+√(25+√(108+√(154+√(225))))]

=>

√[10+√(25+√(108+√(154+√(15×15))))]

=>

√[10+√(25+√(108+√(154+15)))]

=>

√[10+√(25+√(108+√(169)))]

=>

√[10+√25+√(108+√(13×13)))]

=>

√[10+√(25+√(108+13))]

=>

√[10+√(25+√(121))]

=>

√[10+√(25+√(11×11))]

=>

√[10+√(25+11)]

=>

√[10+√(36)]

=>

√[10+√(6×6)]

=>

√[10+6]

=>

√16

=>

√(4×4)

=>

Answer =4

Hope it's helpful for you ☺✌

Answered by Anonymous
11

 \large \bf  {\underline {\underline {Correct \: question : - } }}

 \sf \: The \: value \: of \:  \sqrt{10 +  \sqrt{25 +  \sqrt{108 +  \sqrt{154 +  \sqrt{225} } } } }  \: is

 \bf {\underline  {\underline{ Solution : - }}}

 \sqrt{10 +  \sqrt{25 +  \sqrt{108 +  \sqrt{154 +  \sqrt{225} } } } }  \\  \\   =  \sqrt{10 +  \sqrt{25 +  \sqrt{108 +  \sqrt{154 + 15} } } }  \\  \\  =  \sqrt{10 +  \sqrt{25 +  \sqrt{108 +  \sqrt{169} } } }  \\  \\  =  \sqrt{10 +  \sqrt{25 +  \sqrt{108 + 13} } }   \\  \\  =  \sqrt{10 +  \sqrt{25 +  \sqrt{121} } }  \\  \\  =  \sqrt{10 +  \sqrt{25 + 11} }  \\  \\  =  \sqrt{10 +  \sqrt{36} }  \\  \\  =  \sqrt{10 + 6}   \\  \\ =  \sqrt{16}   = 4

 \therefore \:  \sqrt{10 +  \sqrt{25 +  \sqrt{108 +  \sqrt{154 +  \sqrt{225} } } } }  = 4

 \bf{ \underline {\underline{ Note :  - }}}

 \longmapsto \:  \sqrt{169}  = 13 \\  \\  \longmapsto   \sqrt{121}  = 11 \\  \\  \longmapsto \:  \sqrt{36}  = 6 \\  \\  \longmapsto \:  \sqrt{16}  = 4\\ \\ \longmapsto\:\sqrt{225}=15

Similar questions