Math, asked by BazalledBlue, 5 days ago

kindly solve this...​

Attachments:

Answers

Answered by MrPapaKaHelicopter
2

Answer

Given:

 \frac{  { \secØ }^{3}  }{ { \sec }^{2}Ø - 1 }  +  \frac{  { \csc }^{3} Ø }{ { \csc }^{2}Ø - 1 }  =  \secØ \times  \cscØ \times ( \secØ +  \cscØ)

\colorbox{li} {we have, L.H.S.} =  \frac{ { \sec }^{3}Ø }{ { \sec}^{2}Ø - 1 }  +  \frac{ { \csc }^{3} Ø}{ { \csc }^{2} - 1 }

 ⇒ \frac{ \frac{ { \sec }^{3}Ø }{ { \sec }^{2}Ø } }{ \frac{ { \sec }^{2} Ø - 1}{ { \sec}^{2} Ø} }  +  \frac{ \frac{ {  \csc  }^{3}Ø }{ { \csc }^{2} Ø} }{ \frac{ { \csc}^{2}Ø - 1 }{ { \csc}^{2} Ø} }

 ⇒ \secØ \:  { \csc }^{2}  +  \cscØ \:  { \sec }^{2} Ø

 ⇒ \secØ \:  \cscØ( \secØ +  \cscØ)

\colorbox{lighen} {R.H.S.}

 \\  \\  \\  \\ \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ⌨}

Answered by ProximaNova
2

Step-by-step explanation:

To prove,

\boxed{\dfrac{sec^3\theta}{cosec^2\theta-1} + \dfrac{cosec^3\theta}{cosec^2\theta-1} = sec\theta cosec\theta (sec \theta + cosec \theta)}

Solving LHS:

\sf \bf :\longmapsto \dfrac{sec^3\theta}{sec^2\theta - 1} + \dfrac{cosec^3\theta}{cosec^2 \theta -1}

\sf \bf :\longmapsto \dfrac{sec^3 \theta}{tan^2\theta} + \dfrac{cosec^3 \theta}{cot^2 \theta}

Converting into sin and cos,

\sf \bf :\longmapsto \dfrac{1}{cos^3\theta} \times \dfrac{cos^2\theta}{sin^2 \theta} + \dfrac{1}{sin^3\theta} \times \dfrac{sin^2\theta}{cos^2\theta}

\sf \bf :\longmapsto \dfrac{1}{sin^2\theta cos\theta} + \dfrac{1}{sin\theta cos^2\theta}

Converting back to sec and tan ,

\sf \bf :\longmapsto cosec^2 \theta \  sec\theta + cosec \theta\ sec^2\theta

\sf \bf :\longmapsto sec\theta cosec\theta\ (sec\theta + cosec \theta)

= RHS

\LARGE\color{black}{\colorbox{#FF7968}{T}\colorbox{#4FB3F6}{H}\colorbox{#FEDD8E}{A}\colorbox{#FBBE2E}{N}\colorbox{#60D399}{K}\colorbox{#6D83F3}{S}}

Similar questions