Math, asked by BazalledBlue, 5 days ago

kindly solve this...​

Attachments:

Answers

Answered by ProximaNova
1

Step-by-step explanation:

To prove,

\boxed{\sqrt{\dfrac{1+cosA}{1-cosA}} = cosecA + cotA}

Solving LHS:

\sf \bf :\longmapsto \sqrt{\dfrac{1+cosA}{1-cosA}}

Rationalizing,

\sf \bf :\longmapsto \sqrt{\dfrac{1+cosA}{1-cosA}\times \dfrac{1+cosA}{1+cosA}}

\sf \bf :\longmapsto \sqrt{\dfrac{(1+cosA)^2}{1^2 - cos^2A}}

\sf \bf :\longmapsto \sqrt{\dfrac{(1+cosA)^2}{sin^2A}}

\sf \bf :\longmapsto \dfrac{1+cosA}{sinA}

Seperating the terms

\sf \bf :\longmapsto \dfrac{1}{sinA} + \dfrac{cosA}{sinA}

\sf \bf :\longmapsto cosecA + cotA

= LHS

\LARGE\color{black}{\colorbox{#FF7968}{T}\colorbox{#4FB3F6}{H}\colorbox{#FEDD8E}{A}\colorbox{#FBBE2E}{N}\colorbox{#60D399}{K}\colorbox{#6D83F3}{S}}

Similar questions