Math, asked by Brarz44, 3 months ago

kindly tell accurate answer for this question ! and if u will scribble I will surely report your account !​

Attachments:

Answers

Answered by TrustedAnswerer19
8

\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\

 \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \\  =  \frac{( \sqrt{3}  - 1)( \sqrt{3}  - 1) }{( \sqrt{3} + 1)( \sqrt{3} - 1)  }  \\  =    \frac{ {( \sqrt{3}  - 1)}^{2} }{ {( \sqrt{3} )}^{2}  -  {1}^{2} }  \\  =    \frac{ {( \sqrt{3} )}^{2}  - 2 \sqrt{3}  +  {1}^{2} }{3 - 1}  \\  =  \frac{3 - 2 \sqrt{3} + 1 }{2}  \\  =  \frac{2 + 2 \sqrt{3} }{2}  \\  =  \frac{2(1 +  \sqrt{3} )}{2}  \\  =  \frac{ \cancel 2 \: (1 +  \sqrt{3} )}{ \cancel 2}  \\  = 1 +  \sqrt{3}  \\  \implies \: 1 +  \sqrt{3}  = a + b \sqrt{3}   \:  \:  \:  \: [given] \\  \therefore \: a = 1 \\ \:  \:  \:  \:  \:  b = 1

Similar questions