Chemistry, asked by vikhyatkukreja4485, 1 year ago

Kinetic energy of an electron in the second bohr orbit of a hydrogen atom is

Answers

Answered by Vegota
21

The kinetic energy of an electron in the second Bohr orbit of s H atom is [a0 is Bohr radius],

KE =  \frac{2\pi e^{4m}}{4h^{2} } \\= \frac{h^{2} e^{4m} }{2h^{2} } \\= \frac{\pi^{2}m }{2h^{2} } e^{4} \\= a_{0} = \frac{h^{2} }{4h^{2}e^{2}m\\}\\So, e_{4}=\frac{ h^{4}}{16\pi ^{4}m^{2} a^{2} } \\Hence, KE = \frac{h^{2} }{32\pi^{2} ma^{2} }


Vegota: In the first line by mistakenly i had written KE = A
Answered by itemderby
25

Explanation:

According to Bohr, the angular momentum is given as follows.

                    mvr = \frac{nh}{2 \pi}

Squaring on both the sides, we get the equation as follows.

              m^{2}v^{2}r^{2} = \frac{n^{2}h^{2}}{(2)^{2} (\pi)^{2}}

                            v^{2} = \frac{n^{2}h^{2}}{4(\pi)^{2}m^{2}r^{2}}

Now, we multiply both sides by \frac{1}{2}m as follows.

           \frac{1}{2}mv^{2} = \frac{1}{2}m \times \frac{n^{2}h^{2}}{4 (\pi)^{2} \times m^{2}r^{2}}    

                        K.E = \frac{n^{2}h^{2}}{8 (\pi)^{2} r^{2}m}      ....... (1)

As r = radius of the second orbit of hydrogen atom. This means that, Z = 1 and n = 2.

Hence,     r = a_{o} \times (\frac{n^{2}}{Z})

                 r^{2} = a^{2}_{o} \times (\frac{(2)^{2}}{1})

                                 = 16 \times a^{2}_{o}      .......... (2)

Therefore, putting equation (2) in equation (1) as follows.

              K.E = \frac{n^{2}h^{2}}{8 (\pi)^{2} r^{2}m}

                    = \frac{(2)^{2}h^{2}}{8 (\pi)^{2} {16a^{2}_{o}}m}

                    = \frac{h^{2}}{32 {\pi^{2}} a^{2}_{o}m}

 Thus, we can conclude that the kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is \frac{h^{2}}{32 {\pi^{2}} a^{2}_{o}m}.    

                           

                                 

                             

                               

Similar questions