koi iss question ko solve kardo please......
Answers
Answer:
We know that , tan¢ = sin¢ /cos¢
and ,cot¢ = cos¢ /sin¢ ,cosec¢ = 1/sin¢
=>3(tan¢) + cot¢ = 5cosec¢
=> [3(sin¢/cos¢ ) + cos¢/sin¢] = 5/sin¢
=> [3sin²¢+cos²¢/sin¢*cos¢ ] = 5/sin¢
=> 3(1-cos²¢) + cos²¢ ] = 5cos¢[ •°•sin²¢ = 1-cos²¢]
=> 3- 3cos²¢ + cos²¢ - 5cos¢ =0
=> 2cos²¢ +5cos¢ -3 = 0
=> 2cos²¢ + 6cos¢ -cos¢ - 3 = 0
=> 2cos¢ ( cos¢ + 3) - 1(cos¢ +3) = 9
=>( 2cos¢ -1) (cos¢ +3) = 0
cos¢ = 1/2 or cos¢ = -3 ( neglected) cause range of cos¢ is [-1,1]
so, cos¢ = 1/2 => cos¢ = cosπ/3 =>¢ = π/3
¢ = 2nπ +- π/3 using general solution of trigonometry
___________________________
Answer:
θ=2nπ+−
3
π
\pink{solution}: -solution:−
We know that , tan¢ = sin¢ /cos¢
and ,cot¢ = cos¢ /sin¢ ,cosec¢ = 1/sin¢
=>3(tan¢) + cot¢ = 5cosec¢
=> [3(sin¢/cos¢ ) + cos¢/sin¢] = 5/sin¢
=> [3sin²¢+cos²¢/sin¢*cos¢ ] = 5/sin¢
=> 3(1-cos²¢) + cos²¢ ] = 5cos¢[ •°•sin²¢ = 1-cos²¢]
=> 3- 3cos²¢ + cos²¢ - 5cos¢ =0
=> 2cos²¢ +5cos¢ -3 = 0
=> 2cos²¢ + 6cos¢ -cos¢ - 3 = 0
=> 2cos¢ ( cos¢ + 3) - 1(cos¢ +3) = 9
=>( 2cos¢ -1) (cos¢ +3) = 0
cos¢ = 1/2 or cos¢ = -3 ( neglected) cause range of cos¢ is [-1,1]
so, cos¢ = 1/2 => cos¢ = cosπ/3 =>¢ = π/3
¢ = 2nπ +- π/3 using general solution of trigonometry
___________________________
\boxed{hope \: its \: helpful}
hopeitshelpful