Math, asked by khushalchoudhary719, 7 months ago

koi nahi bata raha 18sep ko exam hai pls bata do 3rd baar pooch raha hoon

Attachments:

Answers

Answered by Mihir1001
31

 \underline{ \huge\bf\red{QuestiØn} :}

Given :-

 \boxed{ \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} } = a + b \sqrt{5}  }

Find :-

  • a

  • b

 \underline{ \: \huge\bf\green{SolutiØn} \: :}

We have,

 \begin{aligned}  \\ &\qquad  \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} } \\  \\ & =  \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  \times  \frac{3 -  \sqrt{5} }{3 -  \sqrt{5} }   \\  \\ & =  \frac{(7 + 3 \sqrt{5})(3 -  \sqrt{5} ) }{(3 +  \sqrt{5})(3 -  \sqrt{5} ) }  \\  \\ & =  \frac{7(3) + 7( -  \sqrt{5} ) + 3 \sqrt{5}(3) + 3 \sqrt{5}( -  \sqrt{5})   }{ {(3)}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\ & =  \frac{21 - 7 \sqrt{5} + 9 \sqrt{5} - 15  }{9 - 5}  \\  \\ & =  \frac{6 + 2 \sqrt{5} }{4} \\  \\  & = \frac{3}{2} +  \frac{1}{2}   \sqrt{5} \end{aligned}

Thus,

\dfrac{3}{2} +  \dfrac{1}{2}  \sqrt{5} \  = \ a + b \sqrt{5}

On comparing both the sides, we get :-

  • a = \dfrac{3}{2}

  • b =  \dfrac{1}{2}

\red{\rule{5.8cm}{0.02cm}}

\mid \underline{\underline{\LARGE\bf\green{Brainliest \: Answer}}}\mid

Similar questions