Math, asked by Anonymous, 1 year ago

Kya Q.4 ka (i) sahi h??

Attachments:

Answers

Answered by siddhartharao77
1
(1) The total number of cards in a deck = 52.

n(S) = 52.

Let A be the event of getting a card of spades of an Ace.

We know that There are 12 spades(Without including Ace) and 4 aces.

(or) 

There are 13 spades and 3 aces.


n(A) = 16


Required probability p(A) = n(A)/n(S)

                                          = 16/52.

                                          = 4/13


Hope this helps!

siddhartharao77: :-)
siddhartharao77: I don't know hindi
siddhartharao77: Already there is ace in spades.
Answered by Anonymous
0

hy \\  here \: is \: your \: answer \\  =  =  =  =  =  =  =  =  =  =  =  =  =  \\ the \: total \: number \: of \: cards \: in \: a \: deck = 52 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = n(s) = 52 \\ let \: A \: be \: the \: event \: of \: getting \: a \: card \: of \: spades \: of \: an \: Ace \\ we \: know \: that \: there \: is \: 12 \: spades(with \: out \: inculding \: Ace) \\ and\: 4aces \\ and. \\ there \: are \: 13 \: spades \: and \: 3 \: aces \\ n(A) \: required \: probablity \: p(A) =  \frac{n(A)}{n(A)} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  =  \frac{16}{52}  =  \frac{4}{13}  \\  \\ i \: hope \: you \: understand
Similar questions