Math, asked by sambasivaraopadarthy, 3 months ago

L-¹(1/s+a)(s+b) by convolution theorem​

Answers

Answered by mathdude500
2

CALCULATION

We can observe that

 \longmapsto \rm \: \dfrac{1}{(s + a)(s + b)}  = \dfrac{1}{s + a}  \times \dfrac{1}{s + b}

Also,

We know that

 \longmapsto \rm \:  {L}^{ - 1}  \bigg(\dfrac{1}{s + a}  \bigg) \:  =  \:  {e}^{ - at}

and

 \longmapsto \rm \:  {L}^{ - 1}  \bigg( \dfrac{1}{s + b} \bigg) \:  =  \:  {e}^{ - bt}

In other words, we are able to factorize the given expression  into a product of two expressions whose Inverse Laplace Transforms are already known to us. Whenever we see this situation of the expression in question, the solution is a straight forward application of the Convolution Theorem.

So,

By Convolution Theorem, we have

\rm \:  {L}^{ - 1}  \bigg( F(s) \:  \times  \: G(s)\bigg) \:  =  \: \int_0^t \: f(u) \:  \times  \: g(t - u) \: du

where f(t) and g(t) are the Inverse Laplace Transforms of F(s) and G(s), respectively. In other words,

\rm \:  {L}^{ - 1}  \bigg(\dfrac{1}{(s + a)(s + b)}  \bigg) =  \rm \:  {L}^{ - 1}  \bigg( \dfrac{1}{s + a}  \times \dfrac{1}{s + b} \bigg)

\longmapsto \rm \:  = \int_0^t \:  {e}^{ - au} {e}^{ - b(t - u)}  du

\longmapsto \rm \:  = \int_0^t \:  {e}^{ - au - bt + bu}  du

\longmapsto \rm \:  = \int_0^t \:  {e}^{ u(b - a) - bt}   du

 \longmapsto \rm \:   =  \bigg( \dfrac{ {e}^{(b - a)u - bt} }{b - a} \bigg)_0^t

 \longmapsto \rm \:   = \dfrac{1}{b - a}  \bigg(  {e}^{(b - a)t - bt}  -  {e}^{ - bt} \bigg)

 \longmapsto \rm \:   = \dfrac{1}{b - a}  \bigg(  {e}^{- at}  -  {e}^{ - bt} \bigg)

Similar questions