Math, asked by nchandrasekaran73, 3 months ago

L and M are points on sides AB and AC of a triangle ABC,
if AL = 2cm, LB = 4cm, LM||BC. Prove that 3LM = BC.​

Answers

Answered by MaheswariS
0

 \textbf{Given:}

\mathsf{In\;\triangle\;ABC,\;LM\parllel\,BC\;and\;AL=2cm,\;LB=4cm}

\textbf{To prove:}

\mathsf{3\;LM=BC}

\textbf{Solution:}

\mathbf{In\;\triangle\,ABC\;\&\;\triangle\,ALM,}

\mathsf{\angle{A}\;is\;common}

\mathsf{\angle{B}=\angle{ALM}}

\mathsf{\angle{C}=\angle{AML}}

\textsf{By AAA-similarity,}

\mathsf{\triangle\,ABC\;and\;\triangle\,ALM\;are\;similar}

\therefore\textsf{Their corresponding sides are proportional}

\implies\mathsf{\dfrac{AL}{AB}=\dfrac{LM}{BC}=\dfrac{AM}{AC}}

\implies\mathsf{\dfrac{AL}{AB}=\dfrac{LM}{BC}}

\implies\mathsf{\dfrac{2}{6}=\dfrac{LM}{BC}}

\implies\mathsf{\dfrac{1}{3}=\dfrac{LM}{BC}}

\implies\boxed{\mathsf{3\;LM=BC}}

Attachments:
Similar questions