Math, asked by SaiShivanee2161, 1 year ago

L. C. M


of 112, 168, 266

Answers

Answered by iTzArnav012
1

6384

please follow me

give brainleist

Attachments:
Answered by MarilynEvans
5
Given numbers,

112, 168 and 266.

To find,

LCM(112, 168, 266) = ?

Prime factorisation of 112 is,

 \begin{array}{r | l} 2 & 112 \\ \cline{1-2} 2 & 56 \\ \cline{1-2} 2 & 28 \\ \cline{1-2} 2 & 14 \\ \cline{1-2} 7 & 7 \\ \cline{1-2} & 1 \end{array}

112 =  2 \times 2 \times 2 \times 2 \times 7 -----(i)

112 =  2^4 \times 7

Prime factorisation of 168 is,

 \begin{array}{r | l} 2 & 168 \\ \cline{1-2} 2 & 84 \\ \cline{1-2} 2 & 42 \\ \cline{1-2} 3 & 21 \\ \cline{1-2} 7 & 7 \\ \cline{1-2} & 1 \end{array}

168 =  2 \times 2 \times 2 \times 3 \times 7 -----(ii)

168 =  2^3 \times 3 \times 7

Prime factorisation of 266 is,

 \begin{array}{r | l} 2 & 266 \\ \cline{1-2} 7 & 133 \\ \cline{1-2} 19 & 19 \\ \cline{1-2} & 1 \end{array}

266 =  2 \times 7 \times 19 ------(iii)

From equation (i), (ii) and (iii),

112 =  2 \times 2 \times 2 \times 2 \times 7

168 =  2 \times 2 \times 2 \times 3 \times 7

266 =  2 \times 7 \times 19

LCM(112, 168, 266) =  2 \times 2 \times 2 \times 3 \times 7 \times 19

 \boxed{\bold{LCM(112, 168, 266) = 6,384}}
Similar questions