Math, asked by mannat559, 4 months ago

L.C.M. of two numbers is 144 and their H.C.F. is 36
If one number is 48, the other number will be-​

Answers

Answered by saptarshisaha2007
2

Answer:

108

Step-by-step explanation:

Let one number be x

LCM × HCF = product of the numbers

144 × 36 = 48x

or, x=  5184/48 = 108

Therefore, the other number is 108.

Answered by anshu24497
19

\begin{gathered} \frak{Given} \begin{cases} \sf{ LCM \: of  \: two  \: numbers = 144} \\  \sf{HCF  \: of \: two \:  numbers = 36} \\  \sf{One  \: of  \: the \:  number = 48} \end{cases} \end{gathered}

 \:  \:

 \begin{gathered} \frak{To  \: Find} \begin{cases} \sf{ The \:  other  \: number} \end{cases} \end{gathered}

 \:  \:

 \large{\frak{ \pmb{Solution :}}}

 \sf{Let  \: the \:  other \:  number  \: be "x".}

 \:  \:

 \sf{Now , applying \:  the \:  relation ;}

 \:  \:

\begin{gathered} \star \: {\boxed{\green{\sf{HCF \times LCM = Product \: of \: two \: numbers}}}}  \end{gathered}

 \:  \:

 \sf{Substituting \:  the  \: values  \: we  \: have ,}

\begin{gathered} \implies \sf \: 36 \times 144 = 48 \times x \end{gathered}

\begin{gathered}  \implies \sf \: 5184 = 48 \times x \end{gathered}

\begin{gathered} \implies \sf \: x = \frac{5184}{48} \end{gathered}

\begin{gathered}\implies{\underline{\boxed{\red{ \sf{x = 108}}}}} \:  \end{gathered}

 \:  \:

\star \: { \underline{ \boxed{ \frak{ \purple{Hence , the  \: other  \: number \:  is 108.}}}}}

 \:  \:

Similar questions