Math, asked by Parveenbhuriya1717, 1 year ago

L{cos(at+b)} solved by Laplace transformation​

Answers

Answered by shahulhameed27
16

Answer:

we know that cos(m+n)=cos(m) cos(n)- sin (m) sin(n)

L{cos(at+b)}=L{cos(at) cos(b) - sin(at) sin(b)}

=cos(b) L{(cosat)} - sin(b) L{sin(at)}

. =cos(b) s/(s^2+a^2) -

sin(b) a/(s^2+a^2)

In the above steps denominators are same hence we get

= {s cos(b) - a sin (b)}/ (a^2+s^2)

Answered by brokendreams
5

\dfrac{s(cosb)-a(sinb)}{s^{2} + a^{2} } is the Laplace Tansformation of L[cos(at+b)].

Step-by-step explanation:

Given: L[cos(at+b)]

To Find: Laplace Transformation

Solution:

  • Laplace Tansformation of L[cos(at+b)]

We have L[cos(at+b)] such that we can write,

\Rightarrow L[cos(at+b)] = L[cos(at) cos(b) - sin(at) sin(b)]

\Rightarrow L[cos(at+b)] = cos(b) L[cos(at)] - sin(b) L[sin(at)]

Since the Laplace Transformation of L[cosat] = \frac{s}{s^{2} + a^{2} } and L[sinat] = \frac{a}{s^{2} + a^{2} }, substituting them in the above expression, we get,

\Rightarrow L[cos(at+b)] = cos(b) \Big( \dfrac{s}{s^{2} + a^{2} } \Big)  - sin(b) \Big( \dfrac{a}{s^{2} + a^{2} } \Big)

\Rightarrow L[cos(at+b)] = \dfrac{s cos(b) - a sin(b) }{s^{2} + a^{2} }

Hence, \dfrac{s(cosb)-a(sinb)}{s^{2} + a^{2} } is the Laplace Tansformation of L[cos(at+b)].

Similar questions