Hindi, asked by nirendk0gmailcom, 2 months ago

लाखए
(ख) कहानी की उचित परिभाषा देते हुए उद्देश्य सम्बन्धी तत्त्व को स्पष्ट
आआना TOT
TOTT​

Answers

Answered by mahormahesh75
1

Answer:

Topic :- Oscillation

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese

We are provided in the question that, a body of mass (m) is 2 kg attached to a spring is Displacement (x) through 0.04 m i.e Amplitude (A) = 0.04 m from its equilibrium position. The spring constant (k) is 200 N/m.

We need to find the following quantities :

Time period (T) = ?

Frequency (n) = ?

maximum Velocity = ?

maximum Acceleration = ?

First let's find the frequency (n) of the given body.

\longrightarrow\:\:\sf n = \dfrac{1}{2\pi} \sqrt{ \dfrac{k}{m}} \\

\longrightarrow\:\:\sf n = \dfrac{1}{2\pi} \sqrt{ \dfrac{200}{2}} \\

\longrightarrow\:\:\sf n = \dfrac{1}{2\pi} \sqrt{ 100} \\

\longrightarrow\:\:\sf n = \dfrac{1}{2\pi} \sqrt{ 10 \times 10} \\

\longrightarrow\:\:\sf n = \dfrac{1}{2\pi}  \times 10\\

\longrightarrow\:\:\sf n = \dfrac{10}{2\pi}  \\

\longrightarrow\:\:\sf n = \dfrac{5}{\pi}  \\

\longrightarrow\:\:\sf n = \dfrac{5}{ \dfrac{22}{7} }  \\

\longrightarrow\:\:\sf n = \dfrac{5 \times 7}{ 22 }  \\

\longrightarrow\:\:\sf n = \dfrac{35}{ 22 }  \\

\longrightarrow\:\: \underline{ \boxed{\sf n  \approx 1.59  \: Hz }}\\

Now, we know that frequency is nothing but reciprocal of time period :

\dashrightarrow\:\:\sf n = \dfrac{1}{T} \\

\dashrightarrow\:\:\sf 1.59= \dfrac{1}{T} \\

\dashrightarrow\:\:\sf T= \dfrac{1}{1.59} \\

\dashrightarrow\:\: \underline{ \boxed{\sf T=0.628 \: s}} \\

For Calculating the maximum Velocity and maximum Acceleration first we need to find the angular velocity :

:\implies \sf \omega = \dfrac{2\pi}{T} \\

:\implies \sf \omega = \dfrac{2\pi}{0.628} \\

:\implies \sf \omega = \dfrac{2 \times 3.14}{0.628} \\

 :\implies \sf \omega = \dfrac{6.28}{0.628} \\

:\implies  \underline{ \boxed{\sf \omega = 10  \:  rad/s}}\\

Now, let's calculate the maximum Velocity of the given particle.

\longmapsto\:\:\sf V_{max} = A \omega \\

\longmapsto\:\:\sf V_{max} = 0.04  \times 10\\

\longmapsto\:\: \underline{ \boxed{\sf V_{max} = 0.4 \:m/s}}  \\

Now, we need to find the maximum Acceleration of the given particle.

\leadsto\:\:\sf A_{max} = - A \omega^2\\

\leadsto\:\:\sf A_{max} = - 0.04 \times  (10)^2\\

\leadsto\:\:\sf A_{max} = - 0.04 \times  100\\

\leadsto\:\:\sf A_{max} = - 0.04 \times  100\\

\leadsto\:\: \underline{ \boxed{\sf A_{max} = - 4 \: m/s^2}}\\

Similar questions