Math, asked by Adhi2323, 10 months ago

lamp post 5 root 3 m high casts a shadow 5m long on the ground. The sun is elevation at this
moment is ______

Answers

Answered by Anonymous
24

Figure refer to attachment

Given

  • Height of lamp post = 5√3m
  • Length of shadow on the ground= 5m

Find out

  • Sun angle elevation

Solution

★Let the elevation angle be θ

In ABC

\implies\sf tan\:\theta=\dfrac{AB}{BC} \\ \\ \\ \implies\sf tan\:\theta=\dfrac{5\sqrt{3}}{5} \\ \\ \\ \implies\sf tan\:\theta=\sqrt{3} \\ \\ \\ \implies\sf tan\:\theta=tan\:60\degree\:\:\:\:\red{[tan\:60\degree=\sqrt{3}]} \\ \\ \\ \implies\sf \theta=60\degree

Hence,

  • Elevation angle = 60°

Additional Information

  • sin θ = perpendicular/hypotenuse

  • cos θ = perpendicular/base

  • tan θ = perpendicular/base
Attachments:
Answered by piyushgavali4455
8

Given :

  • Height of the lamp post = \sf 5\sqrt{3} m

  • Length of the shadow on the ground = 5m

To Find :

  • The sun is elevation at this moment = ?

Figure :

\setlength{\unitlength}{1.6cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{C}}\put(10.6,1){\large\sf{B}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(8.9,0.7){\sf{\large{5m}}}\put(6.8,2){\sf{\large{5 root 3 m}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\put(9.6,1.2){\sf\large{\theta$}}\end{picture}

Solution :

Let the angle of elevation be \sf theta

In ∆ABC,

\dashrightarrow\: \sf tan\: \theta = \dfrac{AB}{BC}

\dashrightarrow\: \sf tan\: \theta = \dfrac{5\sqrt{3}}{5}

\dashrightarrow\: \sf tan\: \theta = \sqrt{3}

\gray\dashrightarrow\: \underline{\boxed{\gray{ \sf \theta = 60^{\circ}} }} \red\bigstar

Therefore, The sun is elevation at this moment is 60°

\underline{\rule{210}3}

Extra brainly knowledge :

\boxed{\begin{minipage}{20 em}$\sf \displaystyle \bullet sin \theta = \dfrac{perpendicular}{hypotenuse} \\\\\\ \bullet </p><p>cos \theta = \dfrac{perpendicular}{base}  \\\\\\ \bullet tan \theta = \dfrac{perpendicular}{base}\right)$\end{minipage}}

\underline{\rule{210}3}

Similar questions