Math, asked by sagarchindaliya121, 5 months ago

laplace criterion was formulated by simon de laplace and ​

Answers

Answered by amanshukla9654
1

Step-by-step explanation:

Laplace Integral. The integral R ∞

0

g(t)e

−stdt is called the Laplace

integral of the function g(t). It is defined by limN→∞ R N

0

g(t)e

−stdt and

depends on variable s. The ideas will be illustrated for g(t) = 1, g(t) = t

and g(t) = t

2

, producing the integral formulas in Table 1.

R ∞

0

(1)e

−stdt = −(1/s)e

−st

t=∞

t=0 Laplace integral of g(t) = 1.

= 1/s Assumed s > 0.

R ∞

0

(t)e

−stdt =

R ∞

0 − d

ds (e

−st)dt Laplace integral of g(t) = t.

= −

d

ds

R ∞

0

(1)e

−stdt Use R

d

dsF(t, s)dt =

d

ds

R

F(t, s)dt.

= − d

ds (1/s) Use L(1) = 1/s.

= 1/s2 Differentiate.

R ∞

0

(t

2

)e

−stdt =

R ∞

0 −

d

ds (te−st)dt Laplace integral of g(t) = t

2

.

= −

d

ds

R ∞

0

(t)e

−stdt

= −

d

ds (1/s2

) Use L(t) = 1/s2

.

= 2/s3

Table 1. The Laplace integral R ∞

0

g(t)e

−stdt for g(t) = 1, t and t

2

.

R ∞

0

(1)e

−st dt =

1

s

R ∞

0

(t)e

−st dt =

1

s

2

R ∞

0

(t

2

)e

−st dt =

2

s

3

In summary, L(t

n

) = n!

s

1+n

An Illustration. The ideas of the Laplace method will be illus-

trated for the solution y(t) = −t of the problem y

0 = −1, y(0) = 0. The

method, entirely different from variation of parameters or undetermined

coefficients, uses basic calculus and college algebra; see Table 2.

Table 2. Laplace method details for the illustration y

0 = −1, y(0) = 0.

y

0

(t)e

−st = −e

−st Multiply y

0 = −1 by e

−st

.

R ∞

0

y

0

(t)e

−stdt =

R ∞

0 −e

−stdt Integrate t = 0 to t = ∞.

R ∞

0

y

0

(t)e

−stdt = −1/s Use Table 1.

s

R ∞

0

y(t)e

−stdt − y(0) = −1/s Integrate by parts on the left.

R ∞

0

y(t)e

−stdt = −1/s2 Use y(0) = 0 and divide.

R ∞

0

y(t)e

−stdt =

R ∞

0

(−t)e

−stdt Use Table 1.

y(t) = −t Apply Lerch’s cancellation law.

carry on

Similar questions