Math, asked by shansaif05, 8 months ago

laplace transform of (1-cost)÷t

Answers

Answered by nishiavanti56
3

Step-by-step explanation:

L.T ( 1/t -cos t/t) =

1/s^2- tan-1 s

Answered by aliyasubeer
0

Answer:

Laplace transform of \frac{1-Cost}{t} = \ln \left(\frac{\sqrt{s^{2}+1}}{s}\right)

Step-by-step explanation:

Here function f(t) ,f(t)=\frac{1-\cos (t)}{t}

                            f(t)=\frac{1}{t}-\frac{Cost}{t}

laplace transform of f(t) given by F(s)=\int_{0}^{+\infty} f(t) \cdot e^{-s \cdot t} \cdot d t

so f(t) becomes                               f(t)=\frac{1}{t}-\frac{Cost}{t}  

                                                               =\int_{s}^{\infty} \frac{1}{u} d u+\int_{s}^{\infty} \frac{u}{u^{2}+1} d u

            $\int_{s}^{\infty} \frac{1}{u} d u=\ln (\infty)-\ln (s)$.$$\int_{s}^{\infty} \frac{u}{u^{2}+1} d u=\frac{1}{2} \ln (\infty)-\frac{1}{2} \ln \left(s^{2}+1\right)$$

\begin{aligned}&\text  F(s)=\ln (\infty)-\ln (s)-\frac{1}{2} \ln (\infty)+\frac{1}{2} \ln \left(s^{2}+1\right) \\&F(s)=\frac{1}{2} \ln \left(s^{2}+1\right)-\ln (s)=\ln \left(\frac{\sqrt{s^{2}+1}}{s}\right)\end{aligned}

Similar questions