Math, asked by scinthiyawilliams, 3 months ago

laplace transform of s/(s^2+a^2)^2​

Answers

Answered by PharohX
4

❑ CORRECT QUESTION :-

 \sf \large Find \:  th e \: laplace \:  \:  inverse \: of \:  -

 \sf \:   \:  \frac{s}{( { {s}^{2} +  {a}^{2})  }^{2} }  \\

❑ SOLUTION :-

❑ GIVEN :-

 \sf \:  F(s) \:  \:  or \:  \:  L \{ f(t)  \}  = \:  \frac{s}{( { {s}^{2} +  {a}^{2})  }^{2} }  \\

 \sf  \:  We \:  \:  know  \:  \: the \:  \:  formula -

 \sf \: L\{t.f(t)\} =  -  \frac{d}{ds} (f(s)) \\

 \sf \: Then

 \sf \: t.f(t)=  {L}^{ - 1}  \bigg( -  \frac{d}{ds} (f(s))  \bigg)\\

 \sf \: Or  \:  \: we  \:  \: can \:  \:  say \:  \:   that -

 \orange{ \sf \:   {L}^{  -  1}  \bigg(  \frac{d}{ds} (f(s))  \bigg) =  -  \: t.f(t)}\\

 \sf \: From  \:  \: the \:  \:  Question

 \sf \: Let

 \sf \: f(s) \:  =  \frac{1}{( { {s}^{2}  +  {a}^{2}) } }  \\

 \sf \: Then

 \sf \: f(t) \:  = L(f(s)) = L \bigg( \frac{1}{ ({ {s}^{2} +  {a}^{2} ) } }  \bigg) \\

 \sf \: f(t) =  \:  \:  \frac{ \sin(at) }{a}  \\

 \sf \: Now \:  \:  appling \:  \:  the \:  \:  formula -

 \sf \:   {L}^{  -  1}  \bigg(  \frac{d}{ds} (f(s))  \bigg) =  -  \: t.f(t)\\

  \implies\sf \:   {L}^{ - 1}  \bigg(  \frac{d}{ds}  \bigg \{ \frac{1}{ {s}^{2} +  {a}^{2}  }  \bigg \}  \bigg) =  -  \: t. \:  \frac{ \sin(at) }{a} \\

  \implies\sf \:   {L}^{ - 1}  \bigg(   \frac{ - 1}{ ({s}^{2} +  {a}^{2}) ^{2}  }  (2s) \bigg) =  -  \: t. \:  \frac{ \sin(at) }{a} \\

  \implies\sf \:   -  {L}^{  - 1}  \bigg(   \frac{ 2s}{ ({s}^{2} +  {a}^{2}) ^{2}  }  \bigg) =  -  \: t. \:  \frac{ \sin(at) }{a} \\

  \implies\sf \:     {L}^{  - 1}  \bigg(   \frac{ 2s}{ ({s}^{2} +  {a}^{2}) ^{2}  }  \bigg) =    \: t. \:  \frac{ \sin(at) }{a} \\

 \sf \: Now  \:  \: divided  \:  \: by  \:  \: 2  \:  \: in  \:  \: both  \:  \: sides -

  \implies\sf \:   {L}^{  - 1}  \bigg(   \frac{ s}{ ({s}^{2} +  {a}^{2}) ^{2}  }  \bigg) =   \: t. \:  \frac{ \sin(at) }{2a} \\

  \sf \: Hence \:  Required \:  Inverse  \:  \:  Laplace  \: is </p><p>\\ \sf   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \: t. \:  \frac{ \sin(at) }{2a} \\

Similar questions