laplace transform of unit step function
Answers
Answered by
0
Answer:
laplace transform of unit step function:
Recall \displaystyle{u}{\left({t}\right)}u(t) is the unit-step function.
1. ℒ\displaystyle{\left\lbrace{u}{\left({t}\right)}\right\rbrace}=\frac{1}{{s}}{u(t)}=
s
1
2. ℒ\displaystyle{\left\lbrace{u}{\left({t}-{a}\right)}\right\rbrace}=\frac{{e}^{{-{a}{s}}}}{{s}}{u(t−a)}=
s
e
−as
3. Time Displacement Theorem:
If \displaystyle{F}{\left({s}\right)}=F(s)= ℒ\displaystyle{\left\lbrace f{{\left({t}\right)}}\right\rbrace}{f(t)} then ℒ\displaystyle{\left\lbrace{u}{\left({t}-{a}\right)}\cdot g{{\left({t}-{a}\right)}}\right\rbrace}={e}^{{-{a}{s}}}{G}{\left({s}\right)}{u(t−a)⋅g(t−a)}=e
−as
G(s)
Similar questions