Math, asked by monjyotiboro, 2 months ago

Last one for today!!!

Topic : Vectors

Give a detailed explanation please❤!​

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\vec{a} = \dfrac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}

\rm :\longmapsto\:\vec{b} = \dfrac{ - 4\hat{i}- 3\hat{k}}{5}

\rm :\longmapsto\:\vec{c} = \hat{j}

Now,

\rm :\longmapsto\: |\vec{a}|  = \sqrt{ \dfrac{1}{9}  + \dfrac{4}{9}  + \dfrac{4}{9}} =  \sqrt{\dfrac{1 + 4 + 4}{9}} = 1

\rm :\longmapsto\: |\vec{b}|  = \sqrt{ \dfrac{9}{25}  + \dfrac{16}{25}}  =  \sqrt{ \dfrac{25}{25} } = 1

\rm :\longmapsto\: |\vec{c}|  = 1

Now,

Let us assume that

 \red{\rm :\longmapsto\:\vec{d} = x\hat{i} + y\hat{j} + z\hat{k} \: which \: makes \: equal \: angle}

 \red{\rm :\longmapsto\: \alpha,  \beta,  \gamma \: with\vec{a}, \: \vec{b}, \: \vec{c} \: respectively}

So, According to statement,

\rm :\longmapsto\:cos \alpha  = cos \beta =  cos \gamma

\rm :\longmapsto\:\dfrac{\vec{d}.\vec{a}}{ |\vec{d}|  |\vec{a}| }  = \dfrac{\vec{d}.\vec{b}}{ |\vec{d}|  |\vec{b}| }  = \dfrac{\vec{d}.\vec{c}}{ |\vec{d}|  |\vec{c}| }

\rm :\longmapsto\:\dfrac{x - 2y + 2z}{3 \sqrt{ {x}^{2}  +  {y}^{2} +  {z}^{2}  } }  = \dfrac{ - 4x - 3z}{5\sqrt{ {x}^{2}  +  {y}^{2} +  {z}^{2}  }}  = \dfrac{y}{\sqrt{ {x}^{2}  +  {y}^{2} +  {z}^{2}  }}

\rm :\longmapsto\:\dfrac{x - 2y + 2z}{3  }  = \dfrac{ - 4x - 3z}{5}  = y

Taking first and third member, we get

\rm :\longmapsto\:\dfrac{x - 2y + 2z}{3  }= y

\rm :\longmapsto\:x - 2y + 2z = 3y

\rm :\longmapsto\:x - 5y + 2z = 0 -  -  - (1)

Now,

Taking second and third member, we get

\rm :\longmapsto\: \dfrac{ - 4x - 3z}{5}  = y

\rm :\longmapsto\: - 4x - 3z = 5y

\rm :\longmapsto\: 4x + 5y +  3z = 0 -  -  - (2)

Now, Solving equation (1) and (2) using cross multiplication method, we get

\rm :\longmapsto\:\dfrac{x}{ - 15 - 10}  = \dfrac{y}{8 - 3}  = \dfrac{z}{5 + 20}

\rm :\longmapsto\:\dfrac{x}{ - 25}  = \dfrac{y}{5}  = \dfrac{z}{25}

\rm :\longmapsto\:\dfrac{x}{ - 5}  = \dfrac{y}{1}  = \dfrac{z}{5}

\rm :\longmapsto\:\dfrac{x}{5}  = \dfrac{y}{ - 1}  = \dfrac{z}{ - 5}

\rm :\longmapsto\:x = 5k

\rm :\longmapsto\:y =  - k

\rm :\longmapsto\:z =  -5 k

So,

 \red{\rm :\longmapsto\:\vec{d} = 5k\hat{i}  -k \hat{j}  - 5k\hat{k} }

As,

\rm :\longmapsto\: |\vec{d}| = 1

\rm :\longmapsto\: \sqrt{ 25 {k}^{2}   +  {k}^{2}  +  {25k}^{2} }  =  \sqrt{51}

\rm :\longmapsto\:51 {k}^{2}  = 51

\rm :\longmapsto\: {k}^{2}  = 1

\rm :\longmapsto\:k \:  =  \:  \pm \: 1

Thus,

 \red{\rm :\longmapsto\:\vec{d} = \pm \: ( 5\hat{i}  -\hat{j}  - 5\hat{k} )}

So,

Required vector is

 \red{\rm :\longmapsto\:\vec{d} = 5\hat{i}  - \hat{j}  - 5\hat{k} }

and

\rm :\longmapsto\: |\vec{d}| =  \sqrt{25 + 1 + 25} =  \sqrt{51}

Hence,

Option (a) is correct.

Similar questions