Math, asked by mathslover7700, 2 months ago

Last Question for moderators
itne worst kyu ho aap log:(
If a = -25, b = 20 cm and c = -10, verify that:
(i) a + (b + c) = (a + b) + c
(ii) a × (b + c) = a × b + a × c​

Answers

Answered by IIMissTwinkleStarII
56

Answer~

Given :-

  • a= -25
  • b= 20
  • c= -10

To find them:-

  • (i) a + (b + c) = (a + b) + c
  • (ii) a × (b + c) = a × b + a × c

Solution:-

(i) a + (b + c) = (a + b) + c

→(-5)+ {20+(-10)} = {(-5) + 20} + (-10)

→(-5) + 10 = 15 + (-10)

→5 = 5

Hence, verifed

Solution:-

(ii) a × (b + c) = a × b + a × c

→(-5) × {20 + (-10)} = (-5) × 20 + (-5) × (-10)

→(-5) × 10 = (-100) + 50

→(-50) = (-50)

Hence,verified

Answered by Anonymous
60

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Question :}}}}}}\end{gathered}

If a = -25, b = 20 and c = -10, verify that:

  • \dashrightarrow (i) a + (b + c) = (a + b) + c
  • \dashrightarrow (ii) a × (b + c) = a × b + a × c

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

\bigstar \: {\underline{\underline{\bf{\purple{Here}}}}}

  • \dashrightarrow a = -25,
  • \dashrightarrow b = 20
  • \dashrightarrow c = -10,

\begin{gathered}\end{gathered}

\bigstar \: \underline{\underline{\bf{\purple{(i)  \: a  +  (b  +  c) = (a  +  b)  +  c}}}}

  • Substituting the values

{: \longmapsto{ - 25  + \bigg(20 +  (- 10) \bigg) = \bigg(( - 25) + 20\bigg) - 10}}

{: \longmapsto{\bigg( - 25 +  10 \bigg) = \bigg( - 5- 10} \bigg)}

{: \longmapsto{\bigg(25 - 10 \bigg) = \bigg(  5 +  10} \bigg)}

{: \longmapsto{\bigg(15 \bigg) = \bigg(15} \bigg)}

\dag{\underline{\boxed{\sf{\red{LHS=RHS }}}}}

  • Hence Verified!

\begin{gathered}\end{gathered}

\bigstar \: \underline{\underline{\bf{\purple{(ii)  \: a  \times  (b   +   c) = a  \times  b  +  a  \times  c}}}}

  • Substituting the values

{: \implies{\sf{ - 25  \times \bigg(20  + ( - 10) \bigg) =  \bigg(( - 25) \times 20\bigg)  +  \bigg(( - 20) \times  ( - 10) \bigg)}}}

{: \implies{\sf{ - 25  \times \bigg(10 \bigg) =  \bigg(( - 25) \times 20\bigg)  +  \bigg(( \cancel{- } 25) \times  (  \cancel{-} 10) \bigg)}}}

{: \implies{\sf{ - 250 =  \bigg( - 500 \bigg)  +  \bigg(25\times10 \bigg)}}}

{: \implies{\sf{ - 250 =  - 500  +  (250)}}}

{: \implies{\sf{ - 250 = -250}}}

\dag{\underline{\boxed{\sf{\red{LHS=RHS }}}}}

  • Hence Verified!

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Additional Information :}}}}}}\end{gathered}

\begin{gathered}\small\boxed{\begin{array}{c} \bf{\dag}\:\underline{\rm{Some\:important\:algebric\:identities\:::}} \\\\ \small{\bigstar}\:\rm{ (A+B)^{2} = A^{2} + 2AB + B^{2}} \\\\ \small{\bigstar}\rm\: {(A-B)^{2} = A^{2} - 2AB + B^{2}} \\\\ \small{\bigstar}\rm\:{A^{2} - B^{2} = (A+B)(A-B)}\\\\ \small{\bigstar}\rm\:{(A+B)^{2} = (A-B)^{2} + 4AB}\\\\ \small{\bigstar}\rm\: {(A-B)^{2} = (A+B)^{2} - 4AB}\\\\  \small{\bigstar} \rm\:{(A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}}\\\\ \small{\bigstar}\rm\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\  \small\bigstar\rm\: {A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})} \end{array}}\end{gathered}

Attachments:
Similar questions