Late A1 A2 A3 A4 be real numbers such that A1 + 2 + 3 + 4 is equal to zero and a square A 1 square + 8 square + 3 square + a square is equal to 1 then the smallest possible give smallest value of the A1 - 82 whole square + 82 - 3 whole square + a 3 - 4 square + 4 - 4 - 1 whole square
Answers
Answered by
3
I am not sure. But I will try to do it.
A1 + 2 + 3 + 4 = 0
A1 + 9 = 0
A1 = -9
A1² + 8² + 3² + a² = 1
(-9)² + 8² + 3² + a² = 1
81 + 64 + 9 + a² = 1
a² = 1 - 154 = -153
a = √-153 = (-153)¹/²
(A1 - 82)² + (82 - 3)² + (a³ - 4² + 4 - 4 - 1)²
(-9 - 82)² + (82 - 3)² + (-153³/² - 4² - 1)²
(-91)² + (79)² + (-153³/² + 16 -1)²
8281 + 6241 + (-153³/² + 15)²
14522 + (-153)³ + 15² + (30 x -153³/²)
14522 - 3581577 + 225 + 30√-153³
3566830 + (30 x 153 x√-153)
3566830 + 4590√153
Similar questions