Math, asked by tdash20000, 2 months ago

LCM of 1125,144 2hat is the ans of the question​

Answers

Answered by Anonymous
5

Step-by-step explanation:

it never rains but it pours

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given numbers are

  • 1125

  • 144

➢ Let first find the prime factors of 144 and 1125.

Consider,

 \red{\rm :\longmapsto\:Prime \:  factorization \: of \: 144}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:144 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:72 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:36\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\: 18\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \:  factorization \: of \: 144 =  {2}^{4}  \times  {3}^{2} }

Consider

 \red{\rm :\longmapsto\:Prime \:  factorization \: of \: 1125}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:1125 \:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:225 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:45\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:15 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \:  factorization \: of \: 1125 =  {5}^{3}  \times  {3}^{2} }

Now, we have

 \red{\rm :\longmapsto\:Prime \:  factorization \: of \: 1125 =  {5}^{3}  \times  {3}^{2} }

 \red{\rm :\longmapsto\:Prime \:  factorization \: of \: 144 =  {2}^{4}  \times  {3}^{2} }

Hence,

\bf :\longmapsto\:LCM \: ( \: 1125,  \: 144 \: )

 \rm \:  \:  =  \:  \:  {2}^{4} \times  {3}^{2}  \times  {5}^{3}

 \rm \:  \:  =  \:  \:  16 \times 9 \times 125

 \rm \:  \:  =  \:  \:  16 \times 9 \times 125

 \rm \:  \:  =  \:  \:  18000

Hence,

\bf :\longmapsto\:LCM \: ( \: 1125,  \: 144 \: ) = 18000

Additional Information :-

Let us consider two positive integers x and y, then

  • 1. HCF (x, y) × LCM (x, y) = x × y

  • 2. HCF always divides x, y and LCM

  • 3. HCF < or = (x, y)

  • 4. LCM > or = (x, y).

Similar questions