Math, asked by bhavanasriyasarla, 11 months ago

LCM of 2 numbers is 45times their HCF. One of the number is 125 and sum of their HCF and LCM is 115a. Find the other number

Answers

Answered by theamazingmysterio
15

Let the lcm be x and hcf be y and the other number be z.

Given lcm of 2 numbers is 45 times their hcf, the sum of HCF + LCM is 1150.

y = 45x. ---- (1)

x + y = 1150   --- (2)


Substitute equation (1) in (2), we get

46x = 1150

x = 25.


Substitute x = 25 in (1), we get

y = 45 * 25 = 1125.


We know that  product of two numbers = LCM * HCF

                                125 * z = 25 * 1125

                                z = 25 * 1125/125

                                   = 225.


The other number = 225.

Answered by Anonymous
34

AnswEr :

225.

\bf{\green{\underline{\underline{\rm{Given\::}}}}}}

LCM of two number is 45 times their HCF. One of the number is 125 and sum of their HCF and LCM is 1150.

\bf{\red{\underline{\underline{\rm{To\:find\::}}}}}}

The other number.

\bf{\large{\blue{\underline{\underline{\tt{Explanation\::}}}}}}

Let the other number be R

\leadsto\sf{L.C.M\:=\:45\:\times H.C.F....................(1)}

A/q

\dashrightarrow\tt{L.C.M+H.C.F=1150}\\\\\\\dashrightarrow\tt{45\times H.C.F+H.C.F=1150\:\:\:\:\:\:\:\:\:\:\big[from(1)\big]}\\\\\\\dashrightarrow\tt{46\times H.C.F=1150}\\\\\\\dashrightarrow\tt{H.C.F=\cancel{\dfrac{1150}{46} }}\\\\\\\dashrightarrow\tt{\blue{H.C.F\:=\:25}}

Putting the H.C.F in equation (1), we get;

\dashrightarrow\tt{L.C.M\:=\:45\times 25}\\\\\\\dashrightarrow\tt{\blue{L.C.M\:=\:1125}}

Now,

Formula use :

\bf{\large{\boxed{\sf{Product\:of\:two\:numbers\:=\:L.C.M\:\times H.C.F}}}}}}

\longrightarrow\tt{125\times R\:=\:1125*25}\\\\\\\\\longrightarrow\tt{R\:=\:\dfrac{\cancel{1125} \times 25}{\cancel{125}} }\\\\\\\longrightarrow\tt{R\:=\:(9\times 25)}\\\\\\\longrightarrow\tt{\blue{R\:=\:225}}

∴ The other number is 225.

Similar questions