Math, asked by Somiyaprasad1457, 3 months ago

LCM of 45,60,and 75
Solve the problem please

Answers

Answered by mathdude500
4

\large\underline{\bf{Solution-}}

\red{\bf :\longmapsto\:Prime  \: factorization \: of \: 45}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:45\:\:}}}\\  {\underline{\sf{3}}}& \underline{\sf{\:\:15 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\red{\bf :\longmapsto\:Prime  \: factorization \: of \: 45 =  {3}^{2} \times 5}

\blue{\bf :\longmapsto\:Prime  \: factorization \: of \: 60}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:60\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:30 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:15 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\blue{\bf :\longmapsto\:Prime  \: factorization \: of \: 60 =  {2}^{2}  \times 3 \times 5}

\green{\bf :\longmapsto\:Prime  \: factorization \: of \: 75}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:75\:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:15 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}} \\ {\sf{}}&\underline{\sf{\:\:1\:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\green{\bf :\longmapsto\:Prime  \: factorization \: of \: 75 =  {5}^{2}  \times 3}

Hence,

\red{ \bf \: LCM(45,60,75) =  {5}^{2} \times  {3}^{2}  \times  {2}^{2} = 900}

Additional Information :-

Let us consider two natural numbers a and b, then

  • 1. HCF(a, b) × LCM(a, b) = a × b

  • 2. HCF(a, b) < = (a, b)

  • 3. LCM(a, b) > = (a, b)

  • 4. HCF is a factor of LCM.

Similar questions