Math, asked by shahsheekha00, 5 months ago

LE a+b+c=9 and ab+bc+ca = 23 Find
the value
of a2+b² +c²
2
0​

Answers

Answered by Anonymous
22

GiveN :-

  •  \sf \: a + b + c = 9 \\  \\  \sf \: ab + bc + ca = 23

To FinD :-

  •  \sf \: the \: value \: of \:  ({a}^{2}  +  {b}^{2}  +  {c}^{2} )

SolutioN :-

  \implies\sf \:  {a}^{2}  +  {b}^{2} +   {c}^{2}  \\  \\   \sf \:

Using the identity :-

  •  \sf {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca

 \sf {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\  \\  \sf \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  =  {(a + b + c)}^{2}  - 2ab - 2bc - 2ca \\  \\  \sf \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = ( {a + b + c)}^{2}  - 2(ab + bc + ca) \\  \\  \sf \: now \: putting \: the \: value \: of \: ( {a + b + c)}^{2} and \: (ab + bc + ca) \longrightarrow \\  \\  \sf \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = ( {9)}^{2}  - 2 \times (23) \\  \\  \sf \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 81 - 46 \\  \\ </strong><strong>\</strong><strong>h</strong><strong>u</strong><strong>g</strong><strong>e</strong><strong> \boxed{ \sf \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 35}

Answered by Anonymous
54

\huge\underline\bold{Answer}

Given :-

● a + b + c = 9

● ab + bc + ca = 23

To find :-

☆ a² + b² + c² = ?

Solution :-

( a + b + c ) ² = a² + b² + c² + 2 ( ab + bc + ca)

=> ( 9 )² = a² + b² + c² + 2( 23 )

=> 81 - 46 = a² + b² + c²

=> a² + b² + c² = 38


Anonymous: Perfect !
Similar questions