Math, asked by marosm2000, 2 months ago

Le a ∈R and f(x) = x³ 2x² + ax - a. Find the value of 'a' such that f(1 + i) is a real number. ​

Answers

Answered by shadowsabers03
2

Let,

\longrightarrow x=1+i

\longrightarrow x-1=i

Squaring both sides,

\longrightarrow (x-1)^2=i^2

\longrightarrow x^2-2x+1=-1

\longrightarrow x^2-2x+2=0

Now,

\longrightarrow f(x)=x^3-2x^2+ax-a

\longrightarrow f(x)=x^3-2x^2+2x+ax-2x-a

\longrightarrow f(x)=x\left(x^2-2x+2\right)+(a-2)x-a

For x=1+i,

\longrightarrow f(1+i)=(1+i)(0)+(a-2)(1+i)-a

\longrightarrow f(1+i)=(a-2)i-2

Given that f(1+i) is a real number, so the coefficient of imaginary part here should be zero, i.e.,

\longrightarrow a-2=0

\longrightarrow\underline{\underline{a=2}}

Hence 2 is the answer.

Similar questions