Math, asked by fcantela, 2 months ago

learning task 1 evaluate the following expressions using gemdas or pemdas rule.
10 - 2 + 6 \div 3  = \\ (8 + 2) - (9 -  {2}^{2}  ) = \\   {3}^{2}  - 15 \div 5 + (6 + 4) =  \\ 5 + 2 - 3 =  \\ 20 - 5 \times 4 + 1 =  \\ 8 \times 2 - 4 \div 2 + 6 =  \\  {( - 3)}^{2}  - 6 + 3 =  \\ 9 \times 8 - 36 \div 4 =  \\ 3 + 2 + 8 \div (4 - 2) =  \\ 16 -  {6}^{2}  + 36 =

Answers

Answered by markjeff17
75

Answer:

1.) 10 - 2 + 6 ÷ 3

 = 10 - 2 + 2

 = 8 + 2

 = 10

2.) (8 + 2) - (9 - 2²)

 = 10 - (9 -2²)

 = 10 - (9 - 4)

 = 10 - 5

 = 5

3.)3² - 15 ÷ 5 + (6 + 4)

= 3² - 15 ÷ 5 + 10

= 9 - 15 ÷ 5 + 10

= 9 - 3 + 10

= 6 + 10

= 16

4.)5 + 2 - 3

= 7 - 3

= 4

5.)20 - 5 × 4 + 1

= 20 - 20 + 1

= 0 + 1

= 1

6.) 8 × 2 - 4 ÷ 2 + 6

= 16 - 4 ÷2 + 6

= 16 - 2 + 6

= 14 + 6

= 20

7.) (3)² - 6 + 3

= 9 - 6 + 3

= 3 + 3

= 6

8.) 9 × 8 - 36 ÷ 4

= 72 - 36 ÷ 4

= 72 - 9

= 63

9.)3 + 2 + 8 ÷ 4 (4 - 2)

=3 + 2 + 8 ÷ 4 (2)

=3 + 2 + 8 ÷ 8

=3 + 2 + 1

=5 + 1

 =6

10.)16 - 6² + 36

 = 16 - 36 + 36

 = 20 - 36

= 16

Step-by-step explanation:

Answered by nafibarli789
0

Answer:

By using gemdas or pemdas rule the answers of the equations are,

1. 10

2.5

3.16

4. 4

5. 1

6. 20

7.  6

8. 63

9. 6

10. 16

Step-by-step explanation:

PEMDAS stands for an acronym utilized to mention the order of procedures to be observed while solving expressions having multiple functions. PEMDAS stands for P- Parentheses, E- Exponents, M- Multiplication, D- Division, A- Addition, and S- Subtraction.

Order of operations is a collection of practices to perform operations in an arithmetic expression. There are various methods where everything reaches through different phases in a fixed sequence

By using the rile the answers are as follows,

1.

10-2+6 \div 3 \\

&=10-2+2 \\

&=8+2

=10

2.

$(8+2)-\left(9-2^{2}\right)$

$$=10-\left(9-2^{2}\right)$$

$=10-(9-4)$

$=10-5$

$=5$

3.

$3^{2}-15 \div 5+(6+4)$

$=3^{2}-15 \div 5+10$

$$=9-15 \div 5+10$$

&=9-3+10 \\

&=6+10 \\

&=16

4.

} 5+2-3\\

&=7-3\\

&=4\\

5.

20-5 \times 4+1\\

&=20-20+1\\

&=0+1\\

&=1\\

6.

8 \times 2-4 \div 2+6\\

&=16-4 \div 2+6\\

&=16-2+6\\

&=14+6

$=20$

7.

(-3)^{2}-6+3

$(3)^{2}-6+3$

$$=9-6+3$$

$$=3+3$$

$=6$

8.

$9 \times 8-36 \div 4$

$$=72-36 \div 4$$

$$=72-9$$

$$=63$$

9.

3+2+8 \div 4(4-2) \\

&=3+2+8 \div 4(2) \\

&=3+2+8 \div 8 \\

&=3+2+1 \\

&=5+1 \\

&=6 \\

10.

16-6^{2}+36 \\

&=16-36+36 \\

&=20-36 \\

&=16

#SPJ3

Similar questions