Math, asked by snakeeye86, 11 days ago

\left. \begin{array} { l } { \frac { 14 } { x + y } + \frac { 3 } { x - y } = 5 } \\ { \frac { 21 } { x + y } - \frac { 1 } { x - y } = 2 } \end{array} \right.

Answers

Answered by diyapardhi2006
1

(x - 2\right)} + \frac{{x}^{2}}{x - 2} - \frac{{x}^{3} + x - 4}{\left(x + 2\right)\left(x - 2\right)}\]

Make all denominators the same so that we can add or subtract the fractions

The lowest common denominator is \(\left(x-2\right)\left(x+2\right)\).

\[\frac{x - 2}{\left(x + 2\right)\left(x - 2\right)} + \frac{\left({x}^{2}\right)\left(x + 2\right)}{\left(x + 2\right)\left(x - 2\right)} - \frac{{x}^{3} + x - 4}{\left(x + 2\right)\left(x - 2\right)}\]

Write as one fraction\[\frac{x - 2 + \left({x}^{2}\right)\left(x + 2\right) - \left({x}^{3} + x - 4\right)}{\left(x + 2\right)\left(x - 2\right)}\]

Simplify\[\frac{x - 2 + {x}^{3} + 2{x}^{2} - {x}^{3} - x + 4}{\left(x + 2\right)\left(x - 2\right)} = \frac{2{x}^{2} + 2}{\left(x + 2\right)\left(x - 2\right)}\]

Take out the common factor and write the final answer\[\frac{2\left({x}^{2} + 1\right)}{\left(x + 2\right)\left(x - 2\right)}\]

WORKED EXAMPLE 21: SIMPLIFYING FRACTIONS

Simplify: \[\frac{2}{{x}^{2} - x} + \frac{{x}^{2} + x + 1}{{x}^{3} - 1} - \frac{x}{{x}^{2} - 1}, \quad \left(x\ne 0;x\ne ±1\right)\]

Factorise the numerator and denominator\[\frac{2}{x\left(x - 1\right)} + \frac{\left({x}^{2} + x + 1\right)}{\left(x - 1\right)\left({x}^{2} + x + 1\right)} - \frac{x}{\left(x - 1\right)\left(x + 1\right)}\]

Simplify and find the common denominator\[\frac{2\left(x + 1\right) + x\left(x + 1\right) - {x}^{2}}{x\left(x - 1\right)\left(x + 1\right)}\]

Write the final answer\[\frac{2x + 2 + {x}^{2} + x - {x}^{2}}{x\left(x - 1\right)\left(x + 1\right)} = \frac{3x + 2}{x\left(x - 1\right)\left(x + 1\right)}\]

Test yourself now

High marks in maths are the key to your success and future plans. Test yourself and learn more on Siyavula Practice.

Sign up and test yourself

EXERCISE 1.10

Simplify (assume all denominators are non-zero):

\(\dfrac{3a}{15}\)

\[\frac{3a}{15} = \frac{a}{5}\]

Show Answer

\(\dfrac{2a + 10}{4}\)

\begin{align*} \frac{2a + 10}{4}& = \frac{2(a+5)}{4}\\ &=\frac{a + 5}{2} \end{align*}

Show Answer

\(\dfrac{5a + 20}{a + 4}\)

\begin{align*} \frac{5a + 20}{a + 4}& = \frac{5(a + 4)}{a + 4}\\ &=5 \end{align*}

Show Answer

\(\dfrac{a^{2} - 4a}{a - 4}\)

\begin{align*} \frac{a^{2} - 4a}{a - 4}& = \frac{a(a - 4)}{a - 4}\\ &=a \end{align*}

Show Answer

\(\dfrac{3a^{2} - 9a}{2a - 6}\)

\begin{align*} \frac{3a^{2} - 9a}{2a - 6}& = \frac{3a(a - 3)}{2(a - 3)}\\ &=\frac{3a}{2} \end{align*}

Show Answer

\(\dfrac{9a + 27}{9a + 18}\)

\begin{align*} \frac{9a + 27}{9a + 18}& = \frac{9(a + 3)}{9(a + 2)}\\ &=\frac{a + 3}{a + 2} \end{align*}

Note restriction: \(a \ne -2\).

Show Answer

\(\dfrac{6ab + 2a}{2b}\)

\begin{align*} \frac{6ab + 2a}{2b}& = \frac{2a(3b + 1)}{2b}\\ &=\frac{a(3b + 1)}{b} \end{align*}

Note restriction: \(b \ne 0\).

Show Answer

\(\dfrac{16x^{2}y - 8xy}{12x - 6}\)

\begin{align*} \frac{16x^{2}y - 8xy}{12x - 6}& = \frac{8xy(2x - 1)}{6(2x - 1)}\\ & = \frac{8xy}{6}\\ &=\frac{4xy}{3} \end{align*}

Show Answer

\(\dfrac{4xyp - 8xp}{12xy}\)

\begin{align*} \frac{4xyp - 8xp}{12xy} & = \frac{4xp(y - 2)}{12xy}\\ &=\frac{p(y - 2)}{3y} \end{align*}

Note restriction: \(y \ne 0\).

Show Answer

\(\dfrac{9x^2 - 16}{6x - 8}\)

\begin{align*} \frac{9x^2 - 16}{6x - 8} &= \frac{(3x-4)(3x+4)}{2(3x-4)} \\ &= \frac{3x+4}{2} \end{align*}

Show Answer

\(\dfrac{b^2 - 81a^2}{18a-2b}\)

\begin{align*} \frac{b^2 - 81a^2}{18a-2b} &= \frac{(b-9)(b+9)}{2(9-b)} \\ &= -\frac{b+9}{2} \end{align*}

Show Answer

\(\dfrac{t^2 - s^2}{s^2 - 2st + t^2}\)

\begin{align*} \frac{t^2 - s^2}{s^2 - 2st + t^2} &= \frac{(t-s)(t+s)}{(s-t)^2} \\ &= \frac{t+s}{t-s} \end{align*}

Note restriction: \(s \ne t\)

Show Answer

\(\dfrac{x^2 - 2x - 15}{5x - 25}\)

\begin{align*} \frac{x^2 - 2x - 15}{5x - 25} &= \frac{(x-5)(x+3)}{5(x - 5)} \\ &= \frac{x+3}{5} \end{align*}

Show Answer

\(\dfrac{x^2 + 2x - 15}{x^2 + 8x + 15}\)

\begin{align*} \frac{x^2 + 2x - 15}{x^2 + 8x + 15} &= \frac{(x+5)(x-3)}{(x+3)(x+5)} \\ &= \frac{x-3}{x+3} \end{align*}

Note restriction: \(x \ne -3\).

Show Answer

\(\dfrac{x^2 - x -6}{x^3 - 27}\)

\begin{align*} \frac{x^2 - x -6}{x^3 - 27} &= \frac{(x-3)(x+2)}{(x-3)(x^2 + 3x + 9)} \\ &= \frac{x+2}{x^2 + 3x + 9} \end{align*}

Show Answer

\(\dfrac{a^2 + 6a - 16}{a^3 - 8}\)

\

Show Answer

\(\dfrac{3x+2}{x^2 - 6x + 8} \times \dfrac{x-2}{3x^2 + 8x + 4}\)

\begin{align*} \frac{3x+2}{x^2 - 6x + 8} \times \frac{x-2}{3x^2 + 8x + 4} &= \frac{3x+2}{(x-4)(x-2)} \times \frac{x-2}{(3x+2)(x+2)} \\ &= \frac{1}{(x-4)(x+2)} \end{align*}

Note restrictions: \(x \ne 4\) and \(x \ne -2\).

Show Answer

\(\dfrac{a^2 - 2a + 8}{a^2 + 6a + 8} \times \dfrac{a^2 + a - 12}{3} - \dfrac{3}{2}\)

\begin{align*} \frac{a^2 - 2a + 8}{a^2 + 6a + 8} \times \frac{a^2 + a - 12}{3} - \frac{3}{2} &= \frac{( & = \frac{(

Similar questions