Math, asked by harryprocesstvm, 4 months ago

length and breadth of a reactangular plot are in the ratio 3:2 and the perimeter is 300 m

Answers

Answered by Anonymous
5

AnswEr -:

  • \underline {\mathrm {\pink { The\: Length \:and\:Breadth \:are\:90m\:and\:60m\:,respectively}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • Length and Breadth of a rectangular plot are in the ratio 3:2.

  • The Perimeter of Rectangular plot is 300 m

\mathrm {\bf{To\:Find-:}}\\

  • The Length and Breadth of Rectangular plot .

\dag{\mathrm {\bf{Solution \:of\:Question \:-:}}}\\

\mathrm {\bf{Let's \:Assume -:}}\\

  • The Length and Breadth of Rectangular plot be 3x and 2x .

Therefore,

  •  \mathrm{\bf{\blue {Dimensions \:are\:\: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangular \:plot \:is\:= \frak{3x\:m}}} & \\\\ \sf{\red{Breadth \:of\: Rectangular \:plot\:is \:=\:\frak{2x \: m}}}\end{cases} \\\\

\underbrace {\mathrm {\bf{ Understanding \:the\:Concept-:}}}\\

  • We have to find the Dimensions [ Length and Breadth ] of Rectangular plot when Perimeter and ratios of Length and Breadth is given .

  • Firstly put the assumed values [ Length and Breadth ] in the Formula for Perimeter of Rectangle.

  • By this We can get the Dimensions [ Length and Breadth ] of Rectangular plot .

_______________________________________________

\dag{\mathrm {\bf{Finding\:Length \:and\:Breadth \:of\: Rectangular \:Plot \:-:}}}\\

As, We know that ,

  • \underline{\boxed{\star{\sf{\blue{Perimeter _{(Rectangle)}  \: = \: 2 ( Length + Breadth) \:units}}}}}

  •  \mathrm{\bf{\blue {Here\:\: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangular \:plot \:is\:= \frak{3x\:m}}} & \\\\ \sf{\red{Breadth \:of\: Rectangular \:plot\:is \:=\:\frak{2x \: m}}}& \\\\ \sf{\pink{ Perimeter \:of\: Rectangular \:plot\:is \:=\:\frak{300m}}}\end{cases} \\\\

Now , By Putting known Values in Formula for Perimeter of Rectangle-:

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  2(3x+2x) = 300m  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  3x+2x = \dfrac{300}{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  3x+2x = \dfrac{\cancel {300}}{\cancel {2}}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  3x+2x = 150  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  5x = 150  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  x = \dfrac{150}{5}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  x = \dfrac{\cancel {150}}{\cancel {5}}  }}\\

  • \qquad \quad \qquad \quad \underline {\boxed{\mathrm {\pink{  x = 30  }}}}\\

Putting x = 30 in Assumed Length and Breadth-:

  •  \mathrm{\bf{\blue {Putting \:x = 30 \: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangular \:plot \:is\:= \frak{3x\:= \:3 \times 30 = 90 m}}} & \\\\ \sf{\red{Breadth \:of\: Rectangular \:plot\:is \:=\:\frak{2x= 2 \times 30 \:= 60  m}}}\end{cases} \\\\

Hence ,

  • \underline {\mathrm {\pink { The\: Length \:and\:Breadth \:are\:90m\:and\:60m\:,respectively}}}\\

________________________________________________

\Large {\bf{\mathrm {Verification \:\red{♡}\:-:}}}\|

As , We know that ,

  • \underline{\boxed{\star{\sf{\blue{Perimeter _{(Rectangle)}  \: = \: 2 ( Length + Breadth) \:units}}}}}

  •  \mathrm{\bf{\blue {Here\:\: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangular \:plot \:is\:= \frak{90\:m}}} & \\\\ \sf{\red{Breadth \:of\: Rectangular \:plot\:is \:=\:\frak{60 \: m}}}& \\\\ \sf{\pink{ Perimeter \:of\: Rectangular \:plot\:is \:=\:\frak{300m}}}\end{cases} \\\\

Now , By Putting known Values in Formula for Perimeter of Rectangle-:

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  2(90+60) = 300m  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  2(150) = 300m  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  300m = 300m  }}\\

Therefore,

  • \qquad \quad \qquad \quad :\implies {\mathrm {  L.H.S = R.H.S  }}\\

  • \qquad \quad \qquad \quad :\implies {\mathrm {  Hence \:, Verified \: ! }}\\

____________________________________________________

\large{\boxed {\bf{\mathrm|\:\:{\underline {More \:to\:know-:}}\:\:|}}}

  • Area of Rectangle = Length × Breadth sq.units

  • Area of Square = Side × Side sq.units

  • Area of Triangle = ½ × Base × Height sq.units

  • Area of Trapezium = ½ × Height × (a+b) or Sum of Parallel sides sq.units

_____________________________________________________

Similar questions