Physics, asked by syedmilitary110, 1 year ago

Length and breadth of a rectangular sheet are 16.2 cm and 10.1 CM respectively the area of the sheet in appropriate significant figures and error is


syedmilitary110: What is this answer

Answers

Answered by knjroopa
76

Answer:

Explanation:

Given Length and breadth of a rectangular sheet are 16.2 cm and 10.1 CM respectively the area of the sheet in appropriate significant figures and error is

Let Δa = error in measurement of a

    Δb = error in measurement of b

    Δx = error in finding x

  Now maximum fractional error in x is  

 So  Δx /x = (Δa/a + Δb/b)

 Now given length = (16. cm^2 ± 0.1) cm

        Breadth = b = (10.1 ± 0.1) cm

         Area = l x b

                   = 16.2 x 10.1

                   = 163.62 sq cm

Now rounding off the area we get area = 164 sq cm

If ΔA is error in area, then relative error is given as ΔA/A = Δl/l ± Δb/b

       = 0.1/16.2 ± 0.1/10.1

       = 1.01 ± 1.62 / 163.62

        = 2.63 / 163.62

It implies ΔA = A x 2.63 / 163.62 sq cm

                       = 163.62 x 2.63 / 163.62

                       = 2.63 sq cm

By rounding off to one significant figure we get

 ΔA = 3 sq cm

Now Area = A ± ΔA

                 = (164 ± 3) sq cm

Answered by bestanswers
25

Given:

Length of a rectangular sheet = 16.2 cm

Breadth of a rectangular sheet = 10.1 cm

Assume,

Δa = error in measurement of a

 Δb = error in measurement of b

Δx = error in finding x

So, the maximum fractional error in x is  

 So  Δx /x = (Δa/a + Δb/b)

 Now given length = (16. cm^2 ± 0.1) cm

        Breadth = b = (10.1 ± 0.1) cm

         Area = l x b

                   = 16.2 x 10.1

                   = 163.62 sq cm

Now rounding off the area we get area = 164 sq cm

If ΔA is error in area, then relative error is given as ΔA/A = Δl/l ± Δb/b

       = 0.1/16.2 ± 0.1/10.1

       = 1.01 ± 1.62 / 163.62

        = 2.63 / 163.62

It implies ΔA = A x 2.63 / 163.62 sq cm

                       = 163.62 x 2.63 / 163.62

                       = 2.63 sq cm

By rounding off to one significant figure we get

 ΔA = 3 sq cm

Now Area = A ± ΔA

                 = (164 ± 3) sq cm

Similar questions