Math, asked by rajratnam090, 10 months ago

length of a cube shaped solid wooden pieces 14 cm from its top surface some amount of wood is carved out in the shape of a hemisphere with radius 7 cm find the total surface area and volume of corresponding shape ​

Answers

Answered by jitendra420156
0

Therefore total surface area of the wooden pieces= 1288 cm²

The volume of the shape is  =\frac{6076}{3} cm³

Step-by-step explanation:

Given , length of a cube shape solid wooden pieces 14 cm from its top surface some amount of wood is carved out in the shape of a hemisphere with radius 7 cm.

The surface area of top hemisphere is 2\pi r^2

                                                               = 2\times  \frac{22}{7} \times 7^2 cm²

                                                               =308 cm²

The surface area of the remaining wooden block is

5 l^2

= 5 \times 14^2 cm²

=980 cm²

Therefore total surface area of the wooden pieces = (308+980)cm²

                                                                                    =1288 cm²

Again ,

The volume of the hemisphere is =\frac{2}{3}\times \pi \times r^3

                                                       =\frac{2}{3}\times \frac{22}{7} \times 7^3 cm³

                                                      =\frac{2156}{3} cm²

Total  volume of the wooden piece is = 14^3 cm³ = 2744 cm³

The volume of the shape =(2744- \frac{2156}{3}) cm³

                                         =\frac{6076}{3} cm³

Similar questions