Math, asked by lover352135, 4 months ago

Length of a rectangle is 16 cm less than twice its breadth. If the perimeter of the rectangle is 100 cm, find its length and breadth.


PLEASE , IT'S URGENT , ANSWER FAST!!!!!!​

Answers

Answered by DüllStâr
122

   \Large \pink{ \underline{\textsf{Required Answer }} \downarrow}

 \\

Given:

  • Length of a rectangle is 16 cm less than twice its breadth.

  • Perimeter of rectangle = 100 cm

 \\

To find:

  • Length

  • Breadth

 \\

Let:

 \\

  • Breadth = x

  • Length = 2x - 16

 \\

Now we know:

 \\

 \bigstar \boxed{ \textrm{Perimeter of rectangle = 2(Length + Breadth)}}

 \\

Using this formula we can find value of x

 \\

 \dashrightarrow \textsf{Perimeter of rectangle = 2(Length + Breadth)} \\

 \\

 \dashrightarrow \textsf{100 = 2(x + 2x - 16)} \\

 \\

 \dashrightarrow \sf{100= 2(x)+ 2(2x - 16)} \\

 \\

 \dashrightarrow \sf{100 = 2x+ 2(2x - 16)} \\

 \\

 \dashrightarrow \sf{100= 2x+ 2 \{2x \} - 2 \{16 \}} \\

 \\

 \dashrightarrow \sf{100= 2x+ 4x- 2 \{16 \}} \\

 \\

 \dashrightarrow \sf{100= 2x+ 4x-3 2} \\

 \\

 \dashrightarrow \sf{100=6x-3 2} \\

 \\

 \dashrightarrow \sf{100 + 32=6x} \\

 \\

 \dashrightarrow \sf{132=6x} \\

 \\

 \dashrightarrow \sf{6x = 132} \\

 \\

 \dashrightarrow \sf{x = \frac{132}{6} } \\

 \\

 \dashrightarrow \sf{x = \cancel\frac{132}{6} } \\

 \\

 \dashrightarrow \sf{x =22}\\

 \\

 \pink{ \textsf{Verification} \downarrow}

 \\

 \dashrightarrow \sf{100 = 2(x + 2x - 16)} \\

 \\

 \dashrightarrow \sf{100 = 2(22 + \{ 2 \times 22  \}- 16)} \\

 \\

 \dashrightarrow \sf{100 = 2(22 + \{ 44  \}- 16)} \\

 \\

 \dashrightarrow \sf{100 = 2(66- 16)} \\

 \\

 \dashrightarrow \sf{100 = 2(50)} \\

 \\

 \dashrightarrow \sf{100 = 2 \times 50} \\

 \\

 \dashrightarrow \sf{100 =100} \\

 \\

 \sf \large{} \dag{}LHS = RHS \dag

 \\

 \sf \large{} Hence \: verified

 \\

Finally:

 \\

  • Breadth = x
  • Breadth = 22cm

 \\

  • Length = 2x - 16
  • Length = 2 × 22 - 16
  • Length = 44 - 16
  • Length = 28cm
Similar questions