Length of a rectangle is 20 centimetres and its breadth is 4 centimetres. When a new rectangle is formed by changing the length and breadth, its perimeter decreased by 8 centimetres and area increased by 16 square centimetres. Find
the change in its length and breadth.
DONT SPAM
Answers
Answered by
7
The perimeter of the original rectangle is,
And its area is,
Let the length and breadth be decreased by and respectively.
The new perimeter of the rectangle is,
And the new area of the rectangle is,
From (1),
And from (1),
Thus there are two cases:
1. We can decrease length by 12 cm and increase breadth by 8 cm.
2. We can decrease length by 8 cm and increase breadth by 4 cm.
However, the new dimensions of the rectangle are 12 cm and 8 cm.
Answered by
2
Answer:
perimeter of original rectangle
P= 2(20+4)
P= 48cm2
area 20 ✖ 4=80
let the length any breadth be decreased by x any y
new perimeter 2(20-x+4-y) =48-8
2(24-x-y)=40
x+x=4
y=4-x
new area of rectangle (20-x) (4-y) =80+16
xy -4x -20=16
from ( I)
x(4-x)-4x-20(4-x)=16
x^2-20x +96
Similar questions