Math, asked by vineet1386, 1 year ago

length of a rectangle is 27 M longer than its breadth if the perimeter of rectangle is 110 M then find its area

Answers

Answered by Anonymous
28

\bf\huge\boxed{\boxed{\boxed{Cybary\:Radhe\:Radhe}}}

Length = Breadth + 27

Length = b

Perimeter =2(l + b)

110  = 2(2b + 27)

110 = 4b + 54

110 - 54 = 4b

56 = 4b

b = 14cm  

Area of Rectangle = l × b

Length = 27 + 14

= 41

Area = 14 × 41

= 574\bf\huge cm^{2}

\bf\huge\boxed{\boxed{\boxed{Radhe\:Radhe}}}


Anonymous: goof
Anonymous: good*
fanbruhh: perfect
Answered by fanbruhh
21
 \huge \bf{hey}

 \huge{ \mathfrak{here \: is \: answer}}

 \bf{given \: - }
 \sf{length = 27m}
 \sf{perimeter = 110m}
 \sf{to \: find = \: breadth \: and \: area}

 \sf{let \: the \: breadth \: of \: rectangle \: be \: x}

 \sf{perimeter \: = 2(l + b)}

 \sf{2(27 + 2x) = 110}

 \sf{54 + 4x = 110}

 \sf{4x = 110 - 54}

 \sf{4x = 56}

 \sf{x = \frac{56}{4}}

 \bf{x = 14}
 \bf{hence \: breadth = 14m}

 \huge{now - \: area}

 \bf{area = length \times \: breadth}

now
length= 27+14=41

 \sf{41 \times\: 14}

 \bf{574 \: m }^{2}
 \huge \boxed{ \boxed{ \boxed{hope \: it \: helps}}}
 \huge{ \mathbb{THANKS}}

Anonymous: great
fanbruhh: thanks re aashu
fanbruhh: thanks re
Similar questions