Math, asked by sahasra9247s, 3 months ago


Length of a rectangle is 8 m less than twice its breadth. If the perimeter of the
rectangle is 56 m, find its length and breadth.​

Answers

Answered by ItzWhiteStorm
26

❍ Let the length of rectangle be (2x - 8) m and breadth of rectangle be x respectively.

________________________

\underline{\bigstar\boldsymbol{According\;to\;the\;given\;Question:}}

  • Length of a rectangle is 8 m less than twice its breadth. Let the value be (2x - 8)
  • Perimeter of rectangle is 56 m.

\Large{\underline{\frak{\pink{\dag\;As\;we\;know\;that:}}}}\\ \\

\red{\bigstar}\;\underline{\boxed{\sf{Perimeter\;of\;rectangle\;=\;2(l+b)}}}\\

Therefore,

Let us apply the given values,

\\ \longrightarrow\sf{56 = 2\bigg((2x-8)+x\bigg)}\\ \\ \\ \longrightarrow\sf{56 =2(3x-8)}\\ \\ \\ \longrightarrow\sf{56=6x-16}\\ \\ \\ \longrightarrow\sf{56 + 16 = 6x}\\ \\ \\\longrightarrow\sf{72=6x} \\ \\ \\\longrightarrow\sf{x =\cancel{\frac{72}{6}}} \\ \\ \\ \longrightarrow\boxed{\frak{x=12}}\;\blue{\bigstar}\\ \\ \\

Hence,

  • Length of rectangle = (2×12 - 8) = (24-8) = 16 m.
  • Breadth of rectangle = 12 m.
Similar questions