LENGTH OF A RECTANGLE IS 8M LESS THAN TWICE ITS BREATH IF THE PERIMETER OF THE RECTANGLE IS 56 METERS FIND OTS LENGTH AND BREADTH
Answers
Answer:
The length is 16 m and breadth is 12 m.
Step-by-step explanation:
Given :
Perimeter = 56 m
Length = 8 m more than breadth
To find :
The length and breadth
Solution :
Let the -
- Breadth be y
- Length be (2y - 8)
★ Perimeter = 2(Length + Breadth)
⇒ 2(2y - 8 + y) = 56
⇒ 2(3y - 8) = 56
⇒ 6y - 16 = 56
⇒ 6y = 56 + 16
⇒ 6y = 72
⇒ y = 72/6
⇒ y = 12
Breadth = 12 m
★ Length =
⇒ 12 + 8
⇒ 16 m
Length = 18 m
Therefore, the length is 16 m and breadth is 12 m.
Answer:
Step-by-step explanation:
Let the required Breadth of rectangle be 'b'
Therefore, according to question,
Length of rectangle = (2b-8)
Also, it's given that
Perimeter od rectangle = 56 m
But, we know that,
Perimeter of a rectangle is given by the formula, 2 (length + breadth)
Therefore, we will get,
Thus, we get,
Breadth of rectangle = 12 m
Length of rectangle = (2×12 - 8) = 16 m
Hence, the Length and Breadth of the rectangle are 16 m and 12 m respectively.