Math, asked by abidaijaz1524, 10 months ago

Length of base is 8 cm and its perpendicular is 6 CM find its perimeter

Answers

Answered by satyamkumarmal2005
1

Answer: 24cm

Step-by-step explanation: Pythagoras' theorem

hypotenous squar = height squar + base squar

so the hypotenous=root(64+36)

 = 10

perimeter = 10+6+8 cm

=24cm

Answered by Anonymous
0

\Large{\underline{\underline{\bf{Solution :}}}}

As, Base(B) = 8 cm

Perpendicular(P) = 6cm

We can find the hypotenuse(H) by using phythagorean theorm.

We know that,

\Large{\implies{\boxed{\boxed{\sf{(H)^2 = (P)^2 + (B)^2}}}}} \\ \\ \sf{→(H)^2 = (6)^2 + (8)^2} \\ \\ \sf{→(H)^2 = 36 + 64} \\ \\ \sf{→(H)^2 = 100} \\ \\ \sf{→(H)^2 = (10)^2} \\ \\ \sf{→H = 10 \: cm}

\rule{150}{2}

Now, we have to find perimeter of the triangle.

We know the formula to find the perimeter of tge triangle.

\large{\implies{\boxed{\boxed{\sf{Perimeter = Sum \: of \: all \: sides}}}}}

\sf{→Perimeter = 6 + 8 + 10} \\ \\ \sf{→Perimeter = 14 + 10} \\ \\ \sf{→Perimeter = 24 \: cm}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{0.19 cm}}\begin{picture}(12,4)\thicklines\put(12,40){$\#\:STAY\:HOME$}\put(11,35){$\#\:STAY\: SAFETY$}\put(20,20){\circle{10}}\put(19.5,21){\line(-1,0){1.5}}\put(20.5,21){\line(1,0){1.5}}\put(18.8,20.3){\circle*{0.7}}\put(21.1,20.3){\circle*{0.7}}\put(20,20.4){\line(0,-1){1.4}}\put(20.7,18.4){\line(-1,0){1.57}}\put(18.6,16.56){\line(0,-1){2}}\put(21.4,16.56){\line(0,-1){2}}\put(19,14.55){\line(-1,0){5}}\put(21,14.55){\line(1,0){5}}\put(14,14.55){\line(0,-1){16}}\put(26,14.55){\line(0,-1){16}}\put(14,14.55){\line(-4,3){5}}\put(26,14.55){\line(4,3){5}}\put(14,11){\line(-4,3){7.5}}\put(26,11){\line(4,3){7.5}}\put(9,18.3){\line(0,1){8.3}}\put(31,18.3){\line(0,1){8.3}}\put(33.5,16.6){\line(0,1){10}}\put(6.5,16.6){\line(0,1){10}}\put(3.5,26.5){\line(1,0){33}}\put(3.5,26.5){\line(0,1){20}}\put(3.5,46.5){\line(1,0){33}}\put(36.5,26.5){\line(0,1){20}}\put(14,-0.6){\line(1,0){12}}\put(14,-1.5){\line(1,0){12}}\put(14.4,-1.6){\line(0,-1){18.5}}\put(25.6,-1.6){\line(0,-1){18.5}}\put(20,-1.6){\line(0,-1){3}}\put(20,-4.6){\line(-1,-6){2.6}}\put(20,-4.6){\line(1,-6){2.6}}\put(14.4,-20){\line(-5,-6){3}}\put(25.6,-20){\line(5,-6){3}}\put(17.3,-20){\line(0,-1){3.7}}\put(17.3,-20){\line(-1,0){3}}\put(17.3,-23.6){\line(-1,0){6}}\put(22.6,-20){\line(0,-1){3.7}}\put(22.6,-20){\line(1,0){3}}\put(22.6,-23.6){\line(1,0){6}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions