Math, asked by shuklakushagra99, 9 months ago

Length of latus rectum of hyperbola x^2/4 - y^2/9 is?
Plz help me

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:latus\:rectum=\frac{3}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Eqn \: of \: hyperbola \:  \frac{ {x}^{2} }{4}  -  \frac{ {y}^{2} }{9}  = 1 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Length \: of \: latus \: rectum = ?

• According to given question :

 \tt:  \implies  \frac{ {x}^{2} }{4} -  \frac{ {y}^{2} }{9}   = 1 \\  \\  \tt:  \implies  \frac{ {x}^{2} }{ {2}^{2} }  -  \frac{ {y}^{2} }{ {3}^{2} }  = 1 \\  \\  \text{So, \: it \: is \: in \: the \: form \: of} \\  \tt:  \implies  \frac{ {x}^{2} }{ {a}^{2} }  -   \frac{ {y}^{2} }{ {b}^{2} }  = 1 \\  \\  \bold{Where: } \\  \tt\circ  \: a = 2 \\  \\  \tt \circ \: b = 3 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Length \: of \: latus \: rectum =  \frac{2b}{ {a}^{2} }  \\  \\ \tt:  \implies Length \: of \: latus \: rectum = \frac{2 \times 3}{4}  \\  \\  \green{\tt:  \implies Length \: of \: latus \: rectum = \frac{3}{2} }

Answered by Anonymous
9

\huge{\underline{\underline{\mathtt{\red{Answer}}}}}

\frac{3}{2}\\

\huge{\underline{\underline{\mathtt{\red{Solution}}}}}

{ \boxed{ \boxed{latus \: rectum \:  =  \frac{2b}{ {a}^{2} } }}}

____________________

Equation of Hyperbola = x²/4 - y²/9 = 1

We know that the standard form of hyperbola equation is

/ - /

Or another form is

/ - /

It means that the given equation is already in its standard form .

So comparing it with its standard form , we get .

⇝ a² = 4 → a = 2

⇝ b² = 9 → b = 3

Formula of latus rectum is mentioned above .

 \red {\implies \:  \frac{2b}{ {a}^{2} } } \\

 \red{ \implies \:  \frac{2 \times 3}{4} } \\

{ \boxed{ \mathtt{ \purple{latus \: rectum \:  \implies \:  \frac{3}{2} }}}}

So our answer is 3/2 .

____________________

Related points :-

Eccentricity ( e ) = c/a

☆ A hyperbola in which a = b is called

equilateral hyperbola.

Similar questions