Math, asked by oes296b, 3 months ago

Length of the diagonals of a rhombus are 16.5 cm and 14.2cm, find its area.​

Answers

Answered by Anonymous
14

Given :

  • Length of the diagonals of a rhombus are 16.5 cm and 14.2cm.

To find :

  • Area of Rhombus

Solution :

Area of Rhombus = 1/2 × D₁ × D₂

➤ 1/2 × 16.5 × 14.2

➤ 2/234.3

➤ 117.15cm²

Area of Rhombus is 117.15cm²

More to Know :

  • Area Of Rectangle = L × B

  • Area of Square = (Side)²

  • Area of Rhombus = 1/2 × D₁ × D₂

  • Area of Parralegram = Base × Height

___________________

Answered by SugarCrash
64

Answer :

Area of Rhombus is 117.5cm².

Solution :

Given :

  • Length of the diagonals of a rhombus are 16.5 cm and 14.2 cm.

To Find :

  • Area of the Rhombus.

\red\bigstar\:\boxed{\sf Area_{Rhombus} = \frac{1}{2} \times d_1 \times d_2 }

Let,

  • d1 = 16.5 cm.
  • d2 = 14.2 cm.

Applying the formula here,

 \sf \leadsto Area_{Rhombus} = \frac{1}{2} \times 16.5 \times 14.2

 \sf \implies Area_{Rhombus} = \frac{1}{2} \times 234.5

 \sf \leadsto Area_{Rhombus} = \underline{\boxed{\pink {\sf 117.5cm^2}}}

Hence,

Area of Rhombus is 117.5cm².

━━━━━━━━━━━

More to know :

\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}

━━━━━━━━━━━

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions