Math, asked by BharatNagarI, 4 months ago

Length of the fence of a trapezium-shaped field ABCD is 120 m. If BC = 48 m, CD = 17 m and AD = 40 m, find the area of this field. Side AB is perpendicular to the parallel sides AD and BC.​

Answers

Answered by thebrainlykapil
228

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • Length of the fence of a trapezium-shaped field ABCD is 120 m. If BC = 48 m, CD = 17 m and AD = 40 m, find the area of this field. Side AB is perpendicular to the parallel sides AD and BC.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Length of Trapezium ABCD = 120m
  • BC = 48m
  • CD = 17m
  • AD = 10m

 \\

\large\underline{ \underline{ \sf \maltese{ \: To \: Find:- }}}

  • Area of the Trapezium Shaped Field .

 \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  AB \:  +  \:BC \:   +  \:CD \:   +  \: AD \:  =  \: 120m  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{ AB \:  +  \:BC \:   +  \:CD \:   +  \: AD \:  =  \: 120    }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ AB \:  +  \:48\:   +  \:17 \:   +  \: 40 \:  =  \: 120    }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ AB \:  +  \:105\:  =  \: 120    }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ AB \:    =  \: 120 \: - \: 105   }}\\

\qquad \quad {:} \longrightarrow \sf{\bf{ AB \:    =  \: 15m   }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \:AB\: = \: 15m  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Since AB is perpendicular to the parallel sides AD and BC . Therefore, AB is the altitude ( height ) of the trapezium.

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  Area \: of \: Trapezium \: = \:  \frac{1}{2}  \:  \times  \: (Sum \: of \: Parallel \: sides \: ) \:  \times  \: Altitude  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{Area \: of \: Field \: = \:  \frac{1}{2}  \:  \times  \: (\: BC \: + \: AD \: ) \:  \times  \: AB   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Area \: of \: Field \: = \:  \frac{1}{2}  \:  \times  \: (\: 48\: + \: 40 \: ) \:  \times  \: 15  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Area \: of \: Field \: = \:  \frac{1}{2}  \:  \times  \: 88 \:  \times  \: 15  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Area \: of \: Field \: = \:  \frac{1}{\cancel2}  \:  \times  \: \cancel{88} \:  \times  \: 15  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Area \: of \: Field \: = \:  44 \: \times \: 15   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Area \: of \: Field \: = \:  660{m}^{2}   }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \: Area \: of \: Field \: = \:  660{m}^{2} }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ltzGyanji
3

Answer:

Perimeter =120 m.

48+17+40+x=120

x=15 m.

Area =

2

1

(sum of parallel sides) × height

=

2

1

(48+40)×15

=660 m

2

.

Similar questions